What is Computer Architecture?

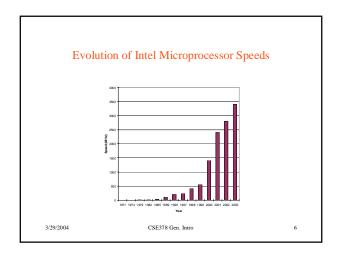
- Structure: static arrangement of the parts
- Organization: dynamic interaction of the parts and their control
- Implementation: design of specific building blocks
- Performance: behavioral study of the system or of some of its components

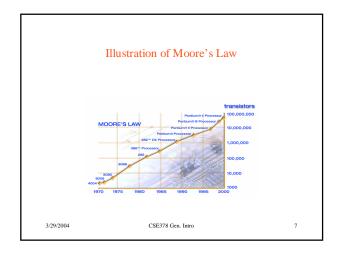
3/29/2004 CSE378 Gen. Intro

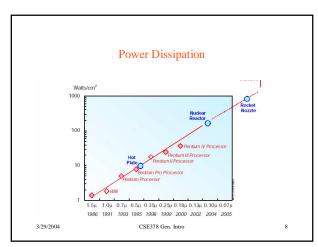
Alternate definition: Instruction Set Architecture (ISA)

- Architecture is an interface between layers
- · ISA is the interface between hardware and software
- ISA is what is visible to the programmer (and ISA might be different for O.S. and applications)
- ISA consists of:
 - instructions (operations and how they are encoded)
 - information units (size, how they are addressed etc.)
 - registers (or more generally processor state)
 - input-output control

3/29/2004 CSE378 Gen. Intro


Computer structure: Von Neumann model Data path + CPU Control Memory hierarchy Memory bus L/O bus 3/29/2004 CSE378 Gen. Intro 3


Computer Organization


- Organization and architecture often used as synonyms
- Organization (in this course) refers to:
 - what are the basic blocks of a computer system, more specifically
 - · basic blocks of the CPU
 - basic blocks of the memory hierarchy
 - how are the basic blocks designed, controlled, connected?
- Organization used to be transparent to the ISA.
- Today more and more of the ISA is "exposed" to the user/compiler.

3/29/2004 CSE378 Gen. Intro 4

Advances in technology					
	Processor technology	Vacuum tubes	Transistors	Integrated circuits	VLSI
	Memory technology	Vacuum tubes	Ferrite core	Semi- conductor	Semi- conductor
	Processor structure	Single processor	Main frames	Micros and minis	PC's 64-bit arch Superscalar Multithreaded
3/29/2004		CSE37	8 Gen. Intro		5

Some Computer families

- · Computers that have the same (or very similar) ISA
 - Compatibility of software between various implementations
- IRM
 - 704, 709, 70xx etc.. From 1955 till 1965
 - 360, 370, 43xx, 33xx From 1965 to the present
 - Power PC
- DEC
 - PDP-11, VAX From 1970 till 1985
 - Alpha (now Compaq, now HP) in 1990's

3/29/2004 CSE378 Gen. Intro 9

More computer families

- Intel
 - Early micros 40xx in early 70's
 - x86 (086,...,486, Pentium, Pentium Pro, Pentium 3, Pentium 4) from 1980 on
 - IA-64 (Itanium) in 2001
- SUN
 - Sparc, Ultra Sparc 1985 0n
- MIPS-SGI
 - Mips 2000, 3000, 4400, 10000 from 1985 on

3/29/2004 CSE378 Gen. Intro 10

MIPS is a RISC

- RISC = Reduced Instruction Set Computer
- · R could also stand for "regular"
- · All arithmetic-logical instructions are of the form

 $R_a \leftarrow R_b \text{ op } R_c$

- MIPS (as all RISC's) is a *Load-Store* architecture
 - ALU operates only on operands that are in registers
 - The only instructions accessing memory are load and store

3/29/2004 CSE378 Gen. Intro 11

Registers

- Registers are the "bricks" of the CPU
- · Registers are an essential part of the ISA
 - Visible to the hardware and to the programmer
- Registers are
 - Used for high speed storage for operands. For example, if a,b,c are in registers 8,9,10 respectively

add \$8,\$9,\$10 # a = b + c

- Easy to name (most computers have 32 registers visible to the programmer and their names are $0,1,2,\ldots,31$)
- Used for addressing memory

3/29/2004 CSE378 Gen. Intro

Registers (ct'd)

- · Not all registers are "equal"
 - Some are special-purpose (e.g., register 0 in MIPS is wired to the
 - Some are used for integer and some for floating-point (e.g., 32 of each in MIPS)
 - Some have restricted use by convention (cf. App. A pp A-22-23)
 - Why no more than 32 or 64 registers
 - Well, sometimes there is (SPARC, Itanium, Cray, Tera)
 Smaller is faster

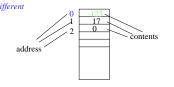
 - Instruction encoding (names have to be short)
 - There can be more registers but they are invisible to the ISA
 - this is called *register renaming* (see CSE 471)

CSE378 Gen. Intro 3/29/2004 13

Memory system

- Memory is a *hierarchy* of devices with faster and more expensive ones closer to CPU
 - Registers
 - Caches (hierarchy: on-chip, off-chip)
 - Main memory (DRAM)
 - Secondary memory (disks)

CSE378 Gen. Intro 3/29/2004 14


Information units

- Basic unit is the *bit* (has value 0 or 1)
- Bits are grouped together in information units:
 - Byte = 8 bits
 - Word = 4 bytes
 - Double word = 2 words
 - etc.

3/29/2004 CSE378 Gen. Intro

Memory addressing

- · Memory is an array of information units
 - Each unit has the same size
 - Each unit has its own address
 - Address of an unit and contents of the unit at that address are

3/29/2004 CSE378 Gen. Intro

Addressing

- In most of today's computers, the basic I-unit that can be addressed is a byte
 - MIPS is byte addressable
- The address space is the set of all I-units that a program can reference
 - The address space is tied to the length of the registers
 - MIPS has 32-bit registers. Hence its address space is 4G bytes
 - Older micros (minis) had 16-bit registers, hence 64 KB address
 - Some current (Alpha, Itanium, Sparc, Altheon) machines have 64bit registers, hence an enormous address space

CSE378 Gen. Intro

Addressing words

- Although machines are byte-addressable, words are the most commonly used I-units
- Every word starts at an address divisible by 4

3/29/2004

Word at address 0 Word at address 4

Word at address 8

CSE378 Gen. Intro

Big-endian vs. little endian

• Byte order within a word:

Little-endian (we'll use this)

Big-endian

3/29/2004 CSE378 Gen. Intro

The CPU - Instruction Execution Cycle

- The CPU executes a program by repeatedly following this cycle
 - 1. Fetch the next instruction, say instruction \boldsymbol{i}
 - 2. Execute instruction i
 - 3. Compute address of the next instruction, say \boldsymbol{j}
- · Of course we'll optimize this but it's the basic concept

3/29/2004 CSE378 Gen. Intro

What's in an instruction?

- An instruction tells the CPU
 - the operation to be performed via the **OPCODE**
 - where to find the operands (source and destination)
- For a given instruction, the ISA specifies
 - what the OPCODE means (semantics)
 - how many operands are required and their types, sizes etc.(syntax)
- · Operand is either
 - register (integer, floating-point, PC)
 - a memory address
 - a constant

3/29/2004

CSE378 Gen. Intro

21