
1

5/25/2004 CSE378 Virtual Mem. Impl. 1

Translation Buffers (TLB’s)

• To perform virtual to physical address translation we need
to look-up a page table

• Since page table is in memory, need to access memory
– Much too time consuming; 50 cycles or more per memory

reference

• Hence we need to cache the page tables

• To that effect special purpose caches named translation
buffers
– Also named Translation LookasideBuffers (TLBs)

5/25/2004 CSE378 Virtual Mem. Impl. 2

TLB organization

• TLB organized as caches

• Therefore for each entry in the TLB we’ ll have
– a tag to check that it is the right entry

– data which instead to be the contents of memory locations, like in a
cache, will be a page table entry (PTE)

• TLB’s are smaller than caches
– 32 to 128 entries

– from fully associative to direct-mapped

– there can be an instruction TLB, a data TLB and also distinct
TLB’s for user and system address spaces

5/25/2004 CSE378 Virtual Mem. Impl. 3

TLB organization

OffsetVirtual page number

Indextag

Physical frame number

v dprot

Copy of PTE

5/25/2004 CSE378 Virtual Mem. Impl. 4

From virtual address to memory location
(highly abstracted; revisited)

ALU

Virtual address

TLB

Physical address

hit

cache

Main
memory

miss

hit

miss

5/25/2004 CSE378 Virtual Mem. Impl. 5

Address translation

• At each memory reference the hardware searches the TLB for the
translation
– TLB hit and valid PTE the physical address is passed to the cache

– TLB miss, either hardware or software (depends on implementation)
searches page table in memory.

• If PTE is valid, contents of the PTE loaded in the TLB and back to step above

• In hardware the TLB miss takes 10-100 cycles

• In software takes up to 100 -1000 cycles

• In either case, no context-switch
– Context-switch takes more cycles than a TLB miss

• If PTE is invalid, we have a page fault (even on a TLB hit)

5/25/2004 CSE378 Virtual Mem. Impl. 6

TLB Management

• TLB’s organized as caches
– If small could be fully associative
– Current trend: larger (about 128 entries); separate TLB’s for

instruction and data; Some part of the TLB reserved for system
– TLB’sare write-back. The only thing that can change is dirty bit +

any other information needed for page replacement algorithm (cf.
CSE 451)

• MIPS 3000 TLB (old)
– 64 entries: fully associative. “Random” replacement; 8 entries used

by system
– On TLB miss, we have a trap; software takes over but no context-

switch

2

5/25/2004 CSE378 Virtual Mem. Impl. 7

TLB management (ct’d)

• At context-switch, the virtual page translations in the TLB
are not valid for the new task
– Invalid the TLB (set all valid bits to 0)

– Or append a Process ID (PID) number to the tag in the TLB. When
a new task takes over, the O.S. creates a new PID.

– PID are recycled and entries corresponding to “old PID” are
invalidated.

5/25/2004 CSE378 Virtual Mem. Impl. 8

Paging systems -- Hardware/software
interactions

• Page tables
– Managed by the O.S.

– Address of the start of the page table for a given process is found
in a special register which is part of the state of the process

– The O.S. has its own page table

– The O.S. knows where the pages are stored on disk

• Page fault
– When a program attempts to access a location which is part of a

page that is not in main memory, we have a page fault

5/25/2004 CSE378 Virtual Mem. Impl. 9

Page fault detection (simplified)

• Page fault is an exception
• Detected by the hardware (invalid bit in PTE either in TLB

or page table)
• To resolve a page fault takes millions of cycles (disk I/O)

– The program that has a page fault must be interrupted

• A page fault occurs in the middle of an instruction
– In order to restart the program later, the state of the program must

be saved and instructions must be restartable (precise exceptions)

• State consists of all registers, including PC and special
registers (such as the one giving the start of the page table
address)

5/25/2004 CSE378 Virtual Mem. Impl. 10

Page fault handler (simplified)

• Page fault exceptions are cleared by an O.S. program
called the page fault handler which will
– Grab a physical frame from a free list maintained by the O.S.

– Find out where the faulting page resides on disk

– Initiate a read for that page

– Choose a frame to free (if needed), i.e., run a replacement
algorithm

– If the replaced frame is dirty, initiate a write of that frame to disk

– Context-switch, i.e., give the CPU to a task ready to proceed

5/25/2004 CSE378 Virtual Mem. Impl. 11

Completion of page fault

• When the faulting page has been read from disk (a few ms
later)
– The disk controller will raise an interrupt (another form of

exception)

– The O.S. will take over (context-switch) and modify the PTE (in
particular, make it valid)

– The program that had the page fault is put on the queue of tasks
ready to be run

– Context-switch to the program that was running before the
interrupt occurred

5/25/2004 CSE378 Virtual Mem. Impl. 12

Two extremes in the memory hierarchy

PARAMETER L1 PAGING SYSTEM

block (page) size 16-64 bytes 4K-8K (also 64K)

miss (fault) time 10-100 cycles
(20-1000 ns)

Millions of cycles
(3-20 ms)

miss (fault) rate 1-10% 0.00001-0.001%

memory size 4K-64K Bytes
(impl. depend.)

Gigabytes
(depends on ISA)

3

5/25/2004 CSE378 Virtual Mem. Impl. 13

Other extreme differences

• Mapping: Restricted (L1) vs. General (Paging)
– Hardware assist for virtual addres translation (TLB)

• Miss handler
– Hardware only for caches

– Software only for paging system (context-switch)

– Hardware and/or software for TLB

• Replacement algorithm
– Not that important for caches

– Very important for paging system

• Write policy
– Always write back for paging systems

5/25/2004 CSE378 Virtual Mem. Impl. 14

Some optimizations

• Speed-up of the most common case (TLB hit + L1 Cache
hit)
– Do TLB look-up and cache look-up in parallel

• possible if cache index independent of virtual address translation
(good only for small caches)

– Have cache indexed by virtual addresses but with physical tags

– Have cache indexed by virtual addresses but with virtual tags
• these last two solutions have additional problems referred to as

synonyms

