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Control unit extension for data hazards
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Forwarding unit

• Forwarding is done prior to ALU computation in EX 
stage

• If we have an R-R instruction, the forwarding unit will 
need to check
– whether EX/Mem result register =  IF/ID rs
–               EX/Mem result register =  IF/ID rt
– and if so set up muxes to ALU source appropriately

• and also whether
– Mem/WB result register =  IF/ID rs
– Mem/WB result register =  IF/ID rt
– and if so set up muxes to ALU source appropriately
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Forwarding unit (continued)

• For a Load/Store or Immediate instruction
– Need to check forwarding for rs only

• For a branch instruction
– Need to check forwarding for the registers involved in the 

comparison



11/16/2005 CSE378 Pipelining hazards 4

Forwarding in consecutive instructions

• What happens if we have
       add   $10,$10,$12
       add   $10,$10,$12
       add   $10,$10,$12
Forwarding priority is given to the most recent result, that is the 

one generated by the ALU in the EX/Mem, not the one 
passed to Mem/Wb 

– So same conditions as before for forwarding from EX/MEM 
but when forwarding from MEM/WB check if the forwarding 
is also done for the same register from EX/MEM
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Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i 
that needs the result of the load, we need to stall the 
pipeline for one cycle, that is 
– instruction i-1 should progress normally
– instruction i should not progress
– no new instruction should be fetched

• The hazard detection unit should operate during the 
ID stage

• When processing instruction i, how do we know 
instruction i-1 is a Load ?
– MemRead signal is asserted in ID/EX
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Hazard detection unit (continued)

• How do we know we should stall
– instruction i-1 is a Load  and either

• ID/EX rt =  IF/ID rs, or
• ID/EX rt =  IF/ID rt

• How do we prevent instruction i to progress
– Put 0’s in all control fields of ID/EX (becomes a no-op)
– Don’t change the IF/ID field (have a control line be asserted 

at every cycle to write it unless we have to stall)

• How do we prevent fetching a new instruction
– Have a control line asserted only when we want to write a 

new value in the PC
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Overall picture (almost) for data hazards
• What is missing...

– Forwarding when Load followed by a Store (mem to mem 
copy)

• forwarding from MEM/WB stage to memory input
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Control hazards

• Pipelining and branching don’t get along
• Transfer of control (jumps, procedure call/returns, 

successful branches) cause control hazards
• When a branch is known to succeed, at the Mem 

stage (but could be done one stage earlier), there 
are instructions in the pipeline in stages before Mem 
that
– need to be converted into “no-op”
– and we need to start fetching the correct instructions by 

using the right PC
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Example of control hazard
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Resolving control hazards

• Detecting a potential control hazard is easy
– Look at the opcode

• We must insure that the state of the program is not 
changed until the outcome of the branch is known. 
Possibilities are:
– Stall as soon as opcode is detected (cost 3 bubbles; same 

type of logic as for the load stall but for 3 cycles instead of 
1)

– Assume that branch won’t be taken (cost only if branch is 
taken; see next slides)

– Use some predictive techniques 
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Assume branch not taken strategy

• We have a problem if branch is taken!
• “No-op” the “wrong” instructions

– Once the new PC is known (in Mem stage)
• Zero out the instruction field in the IF/ID pipeline register
• For the instruction in the ID stage, use the signals that were 

set-up for data dependencies in the Load case
• For the instruction in the EX stage, zero out the result of the 

ALU (e.g, make the result register be register $0)



11/16/2005 CSE378 Pipelining hazards 12

Optimizations

• Move up the result of branch execution
– Do target address computation in ID stage (like in multiple 

cycle implementation)
– Comparing registers is “fast”; can be done in first phase of 

the clock and setting PC in the second phase.
– Thus we can reduce stalling time by 1 bubble

• If the forwarding is set up right, 2 bubbles can be 
saved
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Branch prediction

• Instead of assuming “branch not taken” you can have 
a table keeping the history of past branches 
– We’ll see how to build such tables when we study caches
– History can be restricted to  2-bit “saturating counters” such 

that it takes two wrong prediction outcomes before changing 
your prediction

– If predicted taken, will need only 1 bubble since PC can be 
computed during ID stage.

– There even exists schemes where you can predict and not 
lose any cycle on predicted taken, of course if the prediction 
is correct

• Note that if prediction is incorrect, you need to flush 
the pipe as before
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Saturating Counter Predictor
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Flushing Instructions 
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Current trends in microprocessor design

• Superscalar processors
– Several pipelines, e.g., integer pipeline(s), floating-point, 

load/store unit etc
– Several instructions are fetched and decoded at once. They 

can be executed concurrently if there are no hazards

• Out-of-order execution (also called dynamically 
scheduled processors)
– While some instructions are stalled because of 

dependencies or other causes (cache misses, see later), 
other instructions down he stream can still proceed.

– However results must be stored in program order!
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Current trends (continued)

• Speculative execution 
– Predict the outcome of branches and continue processing 

with (of course) a recovery mechanism. 
– Because branches occur so often, the branch prediction 

mechanisms have become very sophisticated
– Assume that Load/Stores don’t conflict  (of course need to 

be able to recover)

• VLIW (or EPIC) (Very Long Instruction Word)
– In “pure VLIW”, each pipeline (functional unit) is assigned a 

task at every cycle. The compiler does it.
– A little less ambitious: have compiler generate long 

instructions (e.g., using 3 pipes; cf. Intel IA-64 or Itanium)


