
11/16/2005 CSE378 Pipelining hazards 1

Control unit extension for data hazards

IF ID EX Mem WB

IF/ID

ID/EX
EX/Mem

Mem/WB

Control
Unit

Forwarding unit

Hazard
detection
unit

11/16/2005 CSE378 Pipelining hazards 2

Forwarding unit

• Forwarding is done prior to ALU computation in EX
stage

• If we have an R-R instruction, the forwarding unit will
need to check
– whether EX/Mem result register = IF/ID rs
– EX/Mem result register = IF/ID rt
– and if so set up muxes to ALU source appropriately

• and also whether
– Mem/WB result register = IF/ID rs
– Mem/WB result register = IF/ID rt
– and if so set up muxes to ALU source appropriately

11/16/2005 CSE378 Pipelining hazards 3

Forwarding unit (continued)

• For a Load/Store or Immediate instruction
– Need to check forwarding for rs only

• For a branch instruction
– Need to check forwarding for the registers involved in the

comparison

11/16/2005 CSE378 Pipelining hazards 4

Forwarding in consecutive instructions

• What happens if we have
 add $10,$10,$12
 add $10,$10,$12
 add $10,$10,$12
Forwarding priority is given to the most recent result, that is the

one generated by the ALU in the EX/Mem, not the one
passed to Mem/Wb

– So same conditions as before for forwarding from EX/MEM
but when forwarding from MEM/WB check if the forwarding
is also done for the same register from EX/MEM

11/16/2005 CSE378 Pipelining hazards 5

Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i
that needs the result of the load, we need to stall the
pipeline for one cycle, that is
– instruction i-1 should progress normally
– instruction i should not progress
– no new instruction should be fetched

• The hazard detection unit should operate during the
ID stage

• When processing instruction i, how do we know
instruction i-1 is a Load ?
– MemRead signal is asserted in ID/EX

11/16/2005 CSE378 Pipelining hazards 6

Hazard detection unit (continued)

• How do we know we should stall
– instruction i-1 is a Load and either

• ID/EX rt = IF/ID rs, or
• ID/EX rt = IF/ID rt

• How do we prevent instruction i to progress
– Put 0’s in all control fields of ID/EX (becomes a no-op)
– Don’t change the IF/ID field (have a control line be asserted

at every cycle to write it unless we have to stall)

• How do we prevent fetching a new instruction
– Have a control line asserted only when we want to write a

new value in the PC

11/16/2005 CSE378 Pipelining hazards 7

Overall picture (almost) for data hazards
• What is missing...

– Forwarding when Load followed by a Store (mem to mem
copy)

• forwarding from MEM/WB stage to memory input

11/16/2005 CSE378 Pipelining hazards 8

Control hazards

• Pipelining and branching don’t get along
• Transfer of control (jumps, procedure call/returns,

successful branches) cause control hazards
• When a branch is known to succeed, at the Mem

stage (but could be done one stage earlier), there
are instructions in the pipeline in stages before Mem
that
– need to be converted into “no-op”
– and we need to start fetching the correct instructions by

using the right PC

11/16/2005 CSE378 Pipelining hazards 9

Example of control hazard

11/16/2005 CSE378 Pipelining hazards 10

Resolving control hazards

• Detecting a potential control hazard is easy
– Look at the opcode

• We must insure that the state of the program is not
changed until the outcome of the branch is known.
Possibilities are:
– Stall as soon as opcode is detected (cost 3 bubbles; same

type of logic as for the load stall but for 3 cycles instead of
1)

– Assume that branch won’t be taken (cost only if branch is
taken; see next slides)

– Use some predictive techniques

11/16/2005 CSE378 Pipelining hazards 11

Assume branch not taken strategy

• We have a problem if branch is taken!
• “No-op” the “wrong” instructions

– Once the new PC is known (in Mem stage)
• Zero out the instruction field in the IF/ID pipeline register
• For the instruction in the ID stage, use the signals that were

set-up for data dependencies in the Load case
• For the instruction in the EX stage, zero out the result of the

ALU (e.g, make the result register be register $0)

11/16/2005 CSE378 Pipelining hazards 12

Optimizations

• Move up the result of branch execution
– Do target address computation in ID stage (like in multiple

cycle implementation)
– Comparing registers is “fast”; can be done in first phase of

the clock and setting PC in the second phase.
– Thus we can reduce stalling time by 1 bubble

• If the forwarding is set up right, 2 bubbles can be
saved

11/16/2005 CSE378 Pipelining hazards 13

Branch prediction

• Instead of assuming “branch not taken” you can have
a table keeping the history of past branches
– We’ll see how to build such tables when we study caches
– History can be restricted to 2-bit “saturating counters” such

that it takes two wrong prediction outcomes before changing
your prediction

– If predicted taken, will need only 1 bubble since PC can be
computed during ID stage.

– There even exists schemes where you can predict and not
lose any cycle on predicted taken, of course if the prediction
is correct

• Note that if prediction is incorrect, you need to flush
the pipe as before

11/16/2005 CSE378 Pipelining hazards 14

Saturating Counter Predictor

Predict Taken Predict Taken

Predict Not
Taken

Predict Not
Taken

Taken

Taken

Not Taken

Taken

Not Taken

Not Taken

Not Taken

Taken

11/16/2005 CSE378 Pipelining hazards 15

Flushing Instructions

11/16/2005 CSE378 Pipelining hazards 16

Current trends in microprocessor design

• Superscalar processors
– Several pipelines, e.g., integer pipeline(s), floating-point,

load/store unit etc
– Several instructions are fetched and decoded at once. They

can be executed concurrently if there are no hazards

• Out-of-order execution (also called dynamically
scheduled processors)
– While some instructions are stalled because of

dependencies or other causes (cache misses, see later),
other instructions down he stream can still proceed.

– However results must be stored in program order!

11/16/2005 CSE378 Pipelining hazards 17

Current trends (continued)

• Speculative execution
– Predict the outcome of branches and continue processing

with (of course) a recovery mechanism.
– Because branches occur so often, the branch prediction

mechanisms have become very sophisticated
– Assume that Load/Stores don’t conflict (of course need to

be able to recover)

• VLIW (or EPIC) (Very Long Instruction Word)
– In “pure VLIW”, each pipeline (functional unit) is assigned a

task at every cycle. The compiler does it.
– A little less ambitious: have compiler generate long

instructions (e.g., using 3 pipes; cf. Intel IA-64 or Itanium)

