
CSE 378 Spring 2005

Machine Organization and Assembly Language Programming

Problem Set #2

Due: Wednesday April 13th

By the due date, you should have read Chapter 1, Chapter 3 (Sections 3.1 to 3.3), Chapter 2 (Sections
2.1 to 2.9). It would not be a bad idea to read also Sections 2.10, 2.13, 2.15 through 2.18. You should
also read Appendix A1, A2, A5, A6, A9, A10 (not every line of the latter; this is SPIM’s “reference
manual”).

1. Chapter 2. Ex 2.30 How many times will the line of code at label “outer” be executed? How
many times will the line of code at label “inner” be executed? Give the result as a function of
n, the number of elements in the array (in the exercise n = 2500). If X and Y are the arrays,
what are the maximum and minimum number of times that the instruction “add $v0,$v0,1”
(the one before the instruction labelled “skip”) will be executed if all elements of X are different
and all elements of Y are different. If we allow values to be repeated in X and in Y, what is the
maximum number of times this instruction can be executed?

2. Chapter 2 Ex.2. 34 You are encouraged to use SPIM to find the errors (both “logical” and
“syntactical”). In fact, SPIM might “self-correct” some of the errors.

3. For your own enlightenment do Exercise 2.37 using SPIM but do not turn it in.

4. Programming in SPIM. Chapter 2 Ex 2.21 (on the CD). Be sure to test your program with strings
that generate an error. The resulting value, either a positive integer or the value “-1” in case of
an error should be displayed on the SPIM console.

5. Programming in SPIM. Write a program in MIPS assembly language that finds the number of
elements strictly greater than the first element, the number of positive elements and the number
of negative elements in an array of integers (each element is a 32-bit positive, negative, or null
integer). Your input, the array and its size, should be in the “.data” section of your program.

As output, your program should display the 3 values asked for above on the console with appro-
priate messages.

6. After reading the “Compact Code and Stack Architecture” on the CD 2.19.3-4 and “In More
Depth” CD-IMD-2.20-7-8 relative to stack architectures, repeat “on paper” the last exercise if it
had to be programmed on a stack machine. You do not have to write the part relative to the
output on the console.

You can assume that there is a local area of storage that contains the array, its size, and locations
to store the 3 values you are asked for etc. as well as any temporaries/constants that you might
need. You can also assume that if you need constants, they have been initialized in that local
storage.

You can be extremely vague in your addressing, i.e., use instructions like:

Push array[first] #put first element of array on top of stack

Pop negs #i.e, store top of stack in ‘‘negs’’ and pop

Pop #remove top of stack

Ifeq target #if top of stack = 0 branch target. Pop (in either case)

Useful instructions will be Push, Pop, all arithmetic-logical operations that you need, all relational
operators associated with transfer of control (ifeq, ifne etc.). Another operation that might be
useful is “dup” (duplicate the top of stack).

A future programming assignment will be based on the stack architecture concept so this exercise
is important.

You should design your own test files for the programming assignments but you won’t have to turn
them in. We’ll have our own!

A good template for SPIM programs can be found under the “Software” section in the CS378 homepage
or at:
http://www.cs.washington.edu/education/courses/378/05sp/handouts/template.spim

Instructions for Turnin for the SPIM programming will be given to you shortly.

