
CSE378 Branch Instr. 1

Flow of Control -- Conditional branch
instructions

• You can compare directly
– Equality or inequality of two registers
– One register with 0 (>, <, ≥, ≤)

• and branch to a target specified as
– a signed displacement expressed in number of instructions (not

number of bytes) from the instruction following the branch
– in assembly language, it is highly recommended to use labels and

branch to labeled target addresses because:
• the computation above is too complicated
• some pseudo-instructions are translated into two real instructions

CSE378 Branch Instr. 2

Examples of branch instructions

beq rs,rt,target #go to target if rs = rt
beqz rs, target #go to target if rs = 0
bne rs,rt,target #go to target if rs != rt
bltz rs, target #go to target if rs < 0

 etc.
but note that you cannot compare directly 2 registers for <, > …
Any idea why?

CSE378 Branch Instr. 3

Comparisons between two registers

• Use an instruction to set a third register
slt rd,rs,rt #rd = 1 if rs < rt else rd = 0
sltu rd,rs,rt #same but rs and rt are considered unsigned

• Example: Branch to Lab1 if $5 < $6
slt $10,$5,$6 #$10 = 1 if $5 < $6 otherwise $10 = 0
bnez $10,Lab1 # branch if $10 =1, i.e., $5<$6

• There exist pseudo instructions to help you!
blt $5,$6,Lab1 # pseudo instruction translated into

 # slt $1,$5,$6
 # bne $1,$0,Lab1
Note the use of register 1 by the assembler and the fact that computing the

address of Lab1 requires knowledge of how pseudo-instructions are
expanded

CSE378 Branch Instr. 4

Unconditional transfer of control

• Can use “beqz $0, target”
– Very useful but limited range (± 32K instructions)

• Use of Jump instructions
j target #special format for target byte address (26 bits)
jr $rs #jump to address stored in rs (good for switch

#statements and transfer tables)
• Call/return functions and procedures

jal target #jump to target address; save PC of
 #following instruction in $31 (aka $ra)

jr $31 # jump to address stored in $31 (or $ra)

Also possible to use jalr rs,rd # jump to address stored in rs; rd = PC of
 # following instruction in rd with default rd = $31

CSE378 Branch Instr. 5

Branch addressing format

• Need Opcode, one or two registers, and an offset
– No base register since offset added to PC

• When using one register (i.e., compare to 0), can use the
second register field to expand the opcode
– similar to function field for arith instructions

beq $4,$5,1000

bgtz $4,1000

 Opc rs rt/func target offset

CSE378 Branch Instr. 6

Example -- High-level language

 int a[100];
 int i;

 for (i=0; i<100; i++){
 a[i] = 5;
}

CSE378 Branch Instr. 7

Assembly language version
Assume: start address of array a in r15.
 We use r8 to store the value of i and r9 for the value 5
 add $8,$0,$0 #initialize i
 li $9,5 #r9 has the constant 5
Loop: mul $10,$8,4 #r10 has i in bytes
 #could use a shift left by 2
 addu $14,$10,$15 #address of a[i]
 sw $9,0($14) #store 5 in a[i]
 addiu $8,$8,1 #increment i
 blt $8,100,Loop #branch if loop not finished
 #taking lots of liberty here!

CSE378 Branch Instr. 8

Machine language version (generated by
SPIM)

[0x00400020] 0x00004020 add $8, $0, $0 ; 1: add $8,$0,$0
[0x00400024] 0x34090005 ori $9, $0, 5 ; 2: li $9,5
[0x00400028] 0x34010004 ori $1, $0, 4 ; 3: mul $10,$8,4
[0x0040002c] 0x01010018 mult $8, $1
[0x00400030] 0x00005012 mflo $10
[0x00400034] 0x014f7021 addu $14, $10, $15 ; 4: addu $14,$10,$15
[0x00400038] 0xadc90000 sw $9, 0($14) ; 5: sw $9,0($14)
[0x0040003c] 0x25080001 addiu $8, $8, 1 ; 6: addiu $8,$8,1
[0x00400040] 0x29010064 slti $1, $8, 100 ; 7: blt $8,100,Loop
[0x00400044] 0x1420fff9 bne $1, $0, -28 [Loop-0x00400044]

