
CSE378 Control hazards 1

Control hazards

• Pipelining and branching don’t get along
• Transfer of control (jumps, procedure call/returns,

successful branches) cause control hazards
• When a branch is known to succeed, at the Mem stage (but

could be done one stage earlier), there are instructions in
the pipeline in stages before Mem that
– need to be converted into “no-op”
– and we need to start fetching the correct instructions by using the

right PC

CSE378 Control hazards 2

Example of control hazard
Branch decision known at
this stage

Beq $12,$13,L

These 3 instructions are wrong
if branch is successful

The PC is correct and we
fetch the right instruction

IF

IF

IF

IF

IF

CSE378 Control hazards 3

Resolving control hazards

• Detecting a potential control hazard is easy
– Look at the opcode

• We must insure that the state of the program is not
changed until the outcome of the branch is known.
Possibilities are:
– Stall as soon as opcode is detected (cost 3 bubbles; same type of

logic as for the load stall but for 3 cycles instead of 1)
– Assume that branch won’t be taken (cost only if branch is taken;

see next slides)
– Use some predictive techniques

CSE378 Control hazards 4

Assume branch not taken strategy

• We have a problem if branch is taken!
• “No-op” the “wrong” instructions

– Once the new PC is known (in Mem stage)
• Zero out the instruction field in the IF/ID pipeline register
• For the instruction in the ID stage, use the signals that were set-up for

data dependencies in the Load case
• For the instruction in the EX stage, zero out the result of the ALU

(e.g, make the result register be register $0)

CSE378 Control hazards 5

Optimizations

• Move up the result of branch execution
– Do target address computation in ID stage (like in multiple cycle

implementation)
– Comparing registers is “fast”; can be done in first phase of the

clock and setting PC in the second phase.
– Thus we can reduce stalling time by 1 bubble

• In the book, they reduce it by 2 bubbles but….
– The organization as shown is slightly flawed (they forgot about

extra complications in forwarding ….)

CSE378 Control hazards 6

Branch prediction

• Instead of assuming “branch not taken” you can have a
table keeping the history of past branches
– We’ll see how to build such tables when we study caches
– History can be restricted to 2-bit “saturating counters” such that it

takes two wrong prediction outcomes before changing your
prediction

– If predicted taken, will need only 1 bubble since PC can be
computed during ID stage.

– There even exists schemes where you can predict and not lose any
cycle on predicted taken, of course if the prediction is correct

• Note that if prediction is incorrect, you need to flush the
pipe as before

CSE378 Control hazards 7

Control Hazards

• Branches (conditional, unconditional, call-return)
• Interrupts: asynchronous event (e.g., I/O)

– Occurrence of an interrupt checked at every cycle
– If an interrupt has been raised, don’t fetch next instruction, flush

the pipe, handle the interrupt (see later in the quarter)

• Exceptions (e.g., arithmetic overflow, page fault etc.)
– Program and data dependent (repeatable), hence “synchronous”

CSE378 Control hazards 8

Exceptions

• Occur “within” an instruction, for example:
– During IF: page fault (see later)
– During ID: illegal opcode
– During EX: division by 0
– During MEM: page fault; protection violation

• Handling exceptions
– A pipeline is restartable if the exception can be handled and the

program restarted w/o affecting execution

CSE378 Control hazards 9

Precise exceptions

• If exception at instruction i then
– Instructions i-1, i-2 etc complete normally (flush the pipe)
– Instructions i+1, i+2 etc. already in the pipeline will be “no-oped” and

will be restarted from scratch after the exception has been handled
• Handling precise exceptions: Basic idea

– Force a trap instruction on the next IF (i.e., transfer of control to a known
location in the O.S.)

– Turn off writes for all instructions i and following
– When the target of the trap instruction receives control, it saves the PC of

the instruction having the exception
– After the exception has been handled, an instruction “return from trap”

will restore the PC.

CSE378 Control hazards 10

Exception Handling

• When an exception occurs
– Address (PC) of offending instruction saved in Exception Program

Counter (a register not visible to ISA).
• In MIPS should save PC – 4.

– Transfer control to OS

• OS handling of the exception. Two methods
– Register the cause of the exception in a status register which is part

of the state of the process.
– Transfer to a specific routine tailored for the cause of the

exception; this is called vectored interrupts

CSE378 Control hazards 11

Exception Handling (ct’d)

• OS saves the state of the process (registers etc.)
• OS “clears” the exception

– Can decide to abort the program
– Can “correct” the exception
– Can perform useful functions (e.g., I/O interrupt, syscall etc.)

• Return to the running process
– Restores state
– Restores PC

CSE378 Control hazards 12

Precise exceptions (cont’d)

• Relatively simple for integer pipeline
– All current machines have precise exceptions for integer and load-

store operations

• Can lead to loss of performance for pipes with multiple
cycles execution stage

CSE378 Control hazards 13

Integer pipeline (RISC) precise exceptions

• Recall that exceptions can occur in all stages but WB
• Exceptions must be treated in instruction order

– Instruction i starts at time t
– Exception in MEM stage at time t + 3 (treat it first)
– Instruction i + 1 starts at time t +1
– Exception in IF stage at time t + 1 (occurs earlier but treat in 2nd)

CSE378 Control hazards 14

Treating exceptions in order

• Use pipeline registers
– Status vector of possible exceptions carried on with the

instruction.
– Once an exception is posted, no writing (no change of state; easy

in integer pipeline -- just prevent store in memory)
– When an instruction leaves MEM stage, check for exception.

CSE378 Control hazards 15

Difficulties in less RISCy environments

• Due to instruction set (“long” instructions”)
– String instructions (but use of general registers to keep state)
– Instructions that change state before last stage (e.g., autoincrement

mode in Vax and update addressing in Power PC) and these
changes are needed to complete inst. (require ability to back up)

• Condition codes (another way to handle branches)
– Must remember when last changed

CSE378 Control hazards 16

Current trends in microprocessor design

• Superscalar processors
– Several pipelines, e.g., integer pipeline(s), floating-point,

load/store unit etc
– Several instructions are fetched and decoded at once. They can be

executed concurrently if there are no hazards

• Out-of-order execution (also called dynamically scheduled
processors)
– While some instructions are stalled because of dependencies or

other causes (cache misses, see later), other instructions down he
stream can still proceed.

– However results must be stored in program order!

CSE378 Control hazards 17

Current trends (ct’d)

• Speculative execution
– Predict the outcome of branches and continue processing with (of

course) a recovery mechanism.
– Because branches occur so often, the branch prediction

mechanisms have become very sophisticated
– Assume that Load/Stores don’t conflict (of course need to be able

to recover)
• VLIW (or EPIC) (Very Long Instruction Word)

– In “pure VLIW”, each pipeline (functional unit) is assigned a task
at every cycle. The compiler does it.

– A little less ambitious: have compiler generate long instructions
(e.g., using 3 pipes; cf. Intel IA-64 or Itanium)

