
CSE378 Instr. encoding. 1

Instruction encoding

• The ISA defines
– The format of an instruction (syntax)
– The meaning of the instruction (semantics)

• Format = Encoding
– Each instruction format has various fields
– Opcode field gives the semantics (Add, Load etc …)
– Operand fields (rs,rt,rd,immed) say where to find inputs (registers,

constants) and where to store the output

CSE378 Instr. encoding. 2

MIPS Instruction encoding

• MIPS = RISC hence
– Few (3+) instruction formats

• Recall that R in RISC also stands for “Regular”
– All instructions of the same length (32-bits = 4 bytes)
– Formats are consistent with each other

• Opcode always at the same place (6 most significant bits)
• rd (destination register) and rs (one of the source registers) always at

the same place
• immed always at the same place

CSE378 Instr. encoding. 3

I-type (immediate) format

• An instruction with an immediate constant has the SPIM
form:

Opcode Operands Comment
 addi $4,$7,78 # $4=$7 + 78

• Encoding of the 32 bits:
– Opcode is 6 bits
– Since we have 32 registers, each register “name” is 5 bits
– This leaves 16 bits for the immediate constant

Opc rs rt immed

CSE378 Instr. encoding. 4

I-type format example

 addi $a0,$12,33 # $a0 is also $4 = $12 +33
 # Addi has opcode 810 (001000)

Bit position 31 25 20 15 0

 8 12 4 33

In hex: 0x21840021

(binary 001000 01100 00100 0000 0000 0010 0001)

 Opc rs rt immed

CSE378 Instr. encoding. 5

Sign extension

• Internally the ALU (adder) deals with 32-bit numbers
• What happens to the 16-bit constant?

– Extended to 32 bits

• If the Opcode says “unsigned” (e.g., addiu)
– Fill upper 16 bits with 0’s

• If the Opcode says “signed” (e.g., addi)
– Fill upper 16 bits with the msb of the 16 bit constant

• i.e. fill with 0’s if the number is positive
• i.e. fill with 1’s if the number is negative

CSE378 Instr. encoding. 6

R-type (register) format

• Arithmetic, Logical, and Compare instructions require
encoding 3 registers.

• Opcode (6 bits) + 3 registers (5x3 =15 bits) => 32 -21 = 11
“free” bits

• Use 6 of these bits to expand the Opcode
• Use 5 for the “shift” amount in shift instructions

Opc rs rt rd sht func

CSE378 Instr. encoding. 7

R-type example

sub $7,$8,$9

Opc =0, funct = 34 rs rt rd

 0 8 9 7 0 34

Unused bits

CSE378 Instr. encoding. 8

Arithmetic instructions in SPIM

• Don’t confuse the SPIM format with the “encoding” of
instructions

Opcode Operands Comments
add rd,rs,rt #rd = rs + rt
addi rt,rs,immed #rt = rs + immed
sub rd,rs,rt #rd = rs - rt

CSE378 Instr. encoding. 9

Examples

add $8,$9,$10 #$8=$9+$10
add $t0,$t1,$t2 #$t0=$t1+$t2
sub $s2,$s1,$s0 #$s2=$s1-$s0

addi $a0,$t0,20 #$a0=$t0+20
addi $a0,$t0,-20 #$a0=$t0-20

addi $t0,$0,0 #clear $t0
sub $t5,$0,$t5 #$t5 = -$t5

CSE378 Instr. encoding. 10

Integer arithmetic

• Numbers can be signed or unsigned
• Arithmetic instructions (+,-,*,/) exist for both signed and

unsigned numbers (differentiated by Opcode)
– Example: add and addu
 addi and addiu
 mult and multu

• Signed numbers are represented in 2’s complement
• For add and subtract, computation is the same but

– add, sub, addi cause exceptions in case of overflow
– addu, subu, addiu don’t

CSE378 Instr. encoding. 11

How does the CPU know if the numbers are
signed or unsigned?

• It does not!
• You do (or the compiler does)
• You have to tell the machine by using the right instruction

(e.g. add or addu)

CSE378 Instr. encoding. 12

Some interesting instructions. Multiply

• Multiplying 2 32-bit numbers yields a 64-bit result
– Use of HI and LO registers
mult rs,rt #HI/LO = rs*rt
multu rs,rt
Then need to move the HI or LO or both to regular registers
mflo rd #rd = LO
mfhi rd #rd = HI

CSE378 Instr. encoding. 13

Some interesting instructions. Divide

• Similarly, divide needs two registers
– LO gets the quotient
– HI gets the remainder

• If an operand is negative, the remainder is not specified by
the MIPS ISA.

CSE378 Instr. encoding. 14

Logic instructions

• Used to manipulate bits within words, set-up masks etc.
• A sample of instructions

and rd,rs,rt #rd=AND(rs,rt)
andi rd,rs,immed
or rd,rs,rt
xor rd,rs,rt

• Immediate constant limited to 16 bits (zero-extended). If
longer mask needed, use lui (see in a few slides)

• There is a pseudo-instruction “not”
not rt,rs #does 1’s complement (bit by bit

 #complement of rs in rt)

CSE378 Instr. encoding. 15

Pseudo-instructions

• Pseudo-instructions are there to help you
• The assembler recognizes them and generates real SPIM

code
• Careful! One pseudo-instruction can generate several

machine language instructions
– mul rd,rs,rt is two instruction (mult followed by mflo)
– not rs,rt is one instruction (which one?)

CSE378 Instr. encoding. 16

Loading small constants in a register

• If the constant is small (i.e., can be encoded in 16 bits) use
the immediate format with li (Load immediate)

li $14,8 #$14 = 8
• But, there is no opcode for li!
• li is a pseudoinstruction

– SPIM will recognize it and transform it into addi (with sign-
extension) or ori (zero extended)

ori $14,$0,8 #$14 = $0+8

CSE378 Instr. encoding. 17

Loading large constants in a register

• If the constant does not fit in 16 bits (e.g., an address)
• Use a two-step process

– lui (load upper immediate) to load the upper 16 bits; it will zero
out automatically the lower 16 bits

– Use ori for the lower 16 bits (but not li, why?)

• Example: Load the constant 0x1B234567 in register $t0
lui $t0,0x1B23 #note the use of hex constants

 ori $t0,$t0,0x4567

CSE378 Instr. encoding. 18

Example of use of logic instructions

• Create a mask of all 1’s for the low-order byte of $6. Don’t
care about the other bits.
ori $6,$6,0x00ff #$6[7:0] set to 1’s

• Clear high-order byte of register 7 but leave the 3 other
bytes unchanged
lui $5,0x00ff #$5 = 0x00ff0000
ori $5,$5,0xffff #$5 = 0x00ffffff
and $7,$7,$5 #$7 =0x00…… (…whatever was

#there before)

CSE378 Instr. encoding. 19

Shift instructions

• Logical shifts -- Zeroes are inserted
sll rd,rt,shm #left shift of shm bits; inserting 0’s on

#the right
srl rd,rt,shm #right shift of shm bits; inserting 0’s

#on the left
• Arithmetic shifts (useful only on the right)

– sra rd,rt,shm # Sign bit is inserted on the left
• Example let $5 = 0xff00 0000

sll $6,$5,3 #$6 = 0xf800 0000
srl $6,$5,3 #$6 = 0x1fe0 0000
sra $6,$5,3 #$6 = 0xffe0 0000

CSE378 Instr. encoding. 20

Load and Store instructions

• MIPS = RISC = Load-Store architecture
– Load: brings data from memory to a register
– Store: brings data back to memory from a register

• Each load-store instruction must specify
– The unit of info to be transferred (byte, word etc.) through the

Opcode
– The address in memory

• A memory address is a 32-bit byte address
• An instruction has only 32 bits so ….

CSE378 Instr. encoding. 21

Addressing in Load/Store instructions

• The address will be the sum
– of a base register (register rs)
– a 16-bit offset (or displacement) which will be in the immed field

and is added (as a signed number) to the contents of the base
register

• Thus, one can address any byte within ± 32KB of the
address pointed to by the contents of the base register.

CSE378 Instr. encoding. 22

Examples of load-store instructions

• Load word from memory:
lw rt,rs,offset #rt = Memory[rs+offset]

• Store word to memory:
sw rt,rs,offset #Memory[rs+offset]=rt

• For bytes (or half-words) only the lower byte (or half-
word) of a register is addressable
– For load you need to specify if it is sign-extended or not
lb rt,rs,offset #rt =sign-ext(Memory[rs+offset])
lbu rt,rs,offset #rt =zero-ext(Memory[rs+offset])
sb rt,rs,offset #Memory[rs+offset]= least signif.

#byte of rt

CSE378 Instr. encoding. 23

Load-Store format

• Need for
– Opcode (6 bits)
– Register destination (for Load) and source (for Store) : rt
– Base register: rs
– Offset (immed field)

• Example
lw $14,8($sp) #$14 loaded from top of

#stack + 8

 35 29 14 8

CSE378 Instr. encoding. 24

How to address memory in assembly
language

• Problem: how do I put the base address in the right register
and how do I compute the offset

• Method 1 (most recommended). Let the assembler do it!
.data #define data section

xyz: .word 1 #reserve room for 1 word at address xyz
…….. #more data
.text #define program section

 ….. # some lines of code
 lw $5, xyz # load contents of word at add. xyz in $5

• In fact the assembler generates:
lw $5, offset ($gp) #$gp is register 28

CSE378 Instr. encoding. 25

Generating addresses

• Method 2. Use the pseudo-instruction “la” (Load address)
la $6,xyz #$6 contains address of xyz
lw $5,0($6) #$5 contains the contents of xyz
– la is in fact lui followed by ori
– This method can be useful to traverse an array after loading the

base address in a register

• Method 3
– If you know the address (i.e. a constant) use li or lui + ori

