Evolution of ISA’s

« ISA’s have changed over computer “generations”.

« A traditional way to look at ISA complexity encompasses:
— Number of addresses per instruction
— Regularity/size of instruction formats
— Number of addressing types

CSE378 ISA evolution

Number of addresses per instruction

First computer: 1 memory address + implied accumulator
— Names like EMIAC, EDVAC, SEAC, MANIAC (AC=accumulator)

Then 1 memory address + “index” registers (for addressing operands)

Followed by 1 memory address + “general registers” (for addressing
and storing operands)

— IBM System/360 and followers
Then 2 or 3 memory addresses + general registers

Then N memory addresses + general registers
— DEC PDP-11 and VAX

Also “0-address” computers, or “stack computers”
In which category 1s MIPS, and more generally RISC machines?

CSE378 ISA evolution

Addresses per instruction

« RISC machines

— Load-store and branches: 1 memory address + 2 registers
— All other 3 registers or 2 registers + immediate

e (CISC machines

— Most of them: Two addresses
(destination ~ source op.
destination)
— One operand is a register; other 1s either register, immediate, or
given by memory address

— Some special instructions (string manipulation) can have two
memory addresses

CSE378 ISA evolution

Regularity of instruction formats

Started with fixed format (ease of programming in
“machine language’; few instructions)

Then more flexibility (assembler/compiler): three or four
instruction formats, not necessarily the same length

Then strive for memory compactness. Complex, powerful,
variable length instructions (x86)

Back to regular instruction sets: few formats, instructions
of the same length (memory 1s cheap; instructions must be

decoded fast)

CSE378 ISA evolution

Number of instruction formats

e RISC: three or four (instructions have same length)

« CISC

— Several formats, each of fixed (but maybe different) length

— Variable length instructions (depends on opcode, addressing of
operands etc. Intel x86 instructions from 1 to 17 bytes)

* Instruction encoding via “specifiers”

CSE378 ISA evolution

Addressing modes

In early machines: immediate, direct, indirect
Then index registers

Then index + base (sum of 2 registers instead of -- or in
addition to -- index +displacement)

All kinds of additional modes (indirect addressing, auto-
increment, combinations of the above etc.)

In general RISC

— Immediate, indexed, and sometimes index + base (IBM Power PC)

CISC
— Anything goes...

CSE378 ISA evolution 6

The Ultimate CISC - VAX-11

* ISA defined late 70’s. Last product mid 80’s
* Over 200 nstructions

— Some very powerful: “polynomial evaluation™, procedure calls
with register saving and frame set-up etc

e Complex addressing modes

CSE378 ISA evolution

A sample of VAX addressing modes

Immediate (with even some small f-p constants)
Direct (register) One instruction for each I-unit type

Indirect (deferred)

Autodecrement (and autoincrement) . The register 1s
incremented by the I-unit type before (after) the operand is
accessed

Displacement (like MIPS indexed)
Index like displacement but offset depends on the I-unit
Combination of the above and more

CSE378 ISA evolution

Examples

CLRL register (clears a whole register)

CLRB register (clears the low byte of the register)

CLRL (register) clears memory word whose add. is in reg.
CLRL (register)+ as above but then register is incr. by 4

CLRL @(register)+ as above with 1 more level of
indirection (register points to address of address)

CLRL offset(register) offset mult.by 4 for L, by 1 for B etc
CLRL offset[register] similar but use offset + 4 * register

CLRL 12(R4)+[R1] clear word at add. R4 + 12*4 + R1*4
and add 4 to R4

CSE378 ISA evolution 9

Intel x86: the largest number of CPU’s 1n the

world

ISA defined early 80’s

Compatibility hurts:
— 16 to 32-bit architecture to 64-bit as of 2004
— Paucity of general-purpose registers -- only 8

Addressing relies on segments (code, data, stack)
Lots of different instruction formats
Lots of addressing modes (less than the VAX though!)

But ... over 400(?) millions CPU’s in the world and
growing
— 90% (?)of the market if you don’t count embedded processors

CSE378 ISA evolution

10

X86 1nstruction encoding

* Opcode 1 or 2 bytes (defined by one bit in first byte)
» First byte following opcode 1s operand specifier

— e.g., 2 registers

— 1 register and the next byte specifies base and index register for a
memory address for second operand and next byte specifies a
displacement etc

— etc.

* No regularity 1n instruction set

CSE378 ISA evolution

11

MIPS 1s not the only RISC

MIPS family outgrowth of research at Stanford (Hennessy)
DEC (Compaq,HP) Alpha had its roots in MIPS

— Alas, discontinued
Sun family outgrowth of research at Berkeley (Patterson)

IBM Power/PC family outgrowth of research at IBM
Watson (Cocke)

HP Precision architecture

morce ...

CSE378 ISA evolution 12

Recent trends for high-end servers

32-bit architectures are becoming 64-bit architectures
— already in Dec Alpha, some HP-PA, in AMD and most recent Intel
— CISC ISA but RISC-like implementation

A “new” type of instruction format

— VLIW (Very Long Instruction Word) or EPIC (Explicitly Parallel
Instruction Computing)

* Intel-HP Itanium(IA-64); much relaince on compilers

Multithreaded architectures (Tera; SMT is a UW invention;
Hyperthreading in some recent Intel processors)

More than one processor on a chip — CMP (IBM Power 4)
Embedded systems become “systems on a chip”

CSE378 ISA evolution 13

Current trends in RISC

Not that “restricted”

— instructions for MMX (multimedia) and graphics

— 1instructions for multiprocessing (synchronization, memory
hierarchy)

Design 1s becoming more complex
Execute several instructions at once (multiple ALU’s)

— Speculative execution (e.g., guess branch outcomes)

— Execute 1nstructions out-of-order (but “commit” them in program
order)

Ultimate goal 1s (was?) speed
— Reliability, power-awareness are becoming important

CSE378 ISA evolution

14

