
CSE378 ISA evolution 1

Evolution of ISA’s

• ISA’s have changed over computer “generations”.
• A traditional way to look at ISA complexity encompasses:

– Number of addresses per instruction
– Regularity/size of instruction formats
– Number of addressing types

CSE378 ISA evolution 2

Number of addresses per instruction

• First computer: 1 memory address + implied accumulator
– Names like EMIAC, EDVAC, SEAC, MANIAC (AC=accumulator)

• Then 1 memory address + “index” registers (for addressing operands)
• Followed by 1 memory address + “general registers” (for addressing

and storing operands)
– IBM System/360 and followers

• Then 2 or 3 memory addresses + general registers
• Then N memory addresses + general registers

– DEC PDP-11 and VAX
• Also “0-address” computers, or “stack computers”
• In which category is MIPS, and more generally RISC machines?

CSE378 ISA evolution 3

Addresses per instruction

• RISC machines
– Load-store and branches: 1 memory address + 2 registers
– All other 3 registers or 2 registers + immediate

• CISC machines
– Most of them: Two addresses

 (destination ← source op.
destination)

– One operand is a register; other is either register, immediate, or
given by memory address

– Some special instructions (string manipulation) can have two
memory addresses

CSE378 ISA evolution 4

Regularity of instruction formats

• Started with fixed format (ease of programming in
“machine language”; few instructions)

• Then more flexibility (assembler/compiler): three or four
instruction formats, not necessarily the same length

• Then strive for memory compactness. Complex, powerful,
variable length instructions (x86)

• Back to regular instruction sets: few formats, instructions
of the same length (memory is cheap; instructions must be
decoded fast)

CSE378 ISA evolution 5

Number of instruction formats

• RISC: three or four (instructions have same length)
• CISC

– Several formats, each of fixed (but maybe different) length
– Variable length instructions (depends on opcode, addressing of

operands etc. Intel x86 instructions from 1 to 17 bytes)
• Instruction encoding via “specifiers”

CSE378 ISA evolution 6

Addressing modes

• In early machines: immediate, direct, indirect
• Then index registers
• Then index + base (sum of 2 registers instead of -- or in

addition to -- index +displacement)
• All kinds of additional modes (indirect addressing, auto-

increment, combinations of the above etc.)
• In general RISC

– Immediate, indexed, and sometimes index + base (IBM Power PC)

• CISC
– Anything goes...

CSE378 ISA evolution 7

The Ultimate CISC - VAX-11

• ISA defined late 70’s. Last product mid 80’s
• Over 200 instructions

– Some very powerful: “polynomial evaluation”, procedure calls
with register saving and frame set-up etc

• Complex addressing modes

CSE378 ISA evolution 8

A sample of VAX addressing modes

• Immediate (with even some small f-p constants)
• Direct (register) One instruction for each I-unit type
• Indirect (deferred)
• Autodecrement (and autoincrement) . The register is

incremented by the I-unit type before (after) the operand is
accessed

• Displacement (like MIPS indexed)
• Index like displacement but offset depends on the I-unit
• Combination of the above and more

CSE378 ISA evolution 9

Examples

• CLRL register (clears a whole register)
• CLRB register (clears the low byte of the register)
• CLRL (register) clears memory word whose add. is in reg.
• CLRL (register)+ as above but then register is incr. by 4
• CLRL @(register)+ as above with 1 more level of

indirection (register points to address of address)
• CLRL offset(register) offset mult.by 4 for L, by 1 for B etc
• CLRL offset[register] similar but use offset + 4 * register
• CLRL 12(R4)+[R1] clear word at add. R4 + 12*4 + R1*4

and add 4 to R4

CSE378 ISA evolution 10

Intel x86: the largest number of CPU’s in the
world

• ISA defined early 80’s
• Compatibility hurts:

– 16 to 32-bit architecture to 64-bit as of 2004
– Paucity of general-purpose registers -- only 8

• Addressing relies on segments (code, data, stack)
• Lots of different instruction formats
• Lots of addressing modes (less than the VAX though!)
• But … over 400(?) millions CPU’s in the world and

growing
– 90% (?)of the market if you don’t count embedded processors

CSE378 ISA evolution 11

X86 instruction encoding

• Opcode 1 or 2 bytes (defined by one bit in first byte)
• First byte following opcode is operand specifier

– e.g., 2 registers
– 1 register and the next byte specifies base and index register for a

memory address for second operand and next byte specifies a
displacement etc

– etc.

• No regularity in instruction set

CSE378 ISA evolution 12

MIPS is not the only RISC

• MIPS family outgrowth of research at Stanford (Hennessy)
• DEC (Compaq,HP) Alpha had its roots in MIPS

– Alas, discontinued

• Sun family outgrowth of research at Berkeley (Patterson)
• IBM Power/PC family outgrowth of research at IBM

Watson (Cocke)
• HP Precision architecture
• more ...

CSE378 ISA evolution 13

Recent trends for high-end servers

• 32-bit architectures are becoming 64-bit architectures
– already in Dec Alpha, some HP-PA, in AMD and most recent Intel
– CISC ISA but RISC-like implementation

• A “new” type of instruction format
– VLIW (Very Long Instruction Word) or EPIC (Explicitly Parallel

Instruction Computing)
• Intel-HP Itanium(IA-64); much relaince on compilers

• Multithreaded architectures (Tera; SMT is a UW invention;
Hyperthreading in some recent Intel processors)

• More than one processor on a chip – CMP (IBM Power 4)
• Embedded systems become “systems on a chip”

CSE378 ISA evolution 14

Current trends in RISC

• Not that “restricted”
– instructions for MMX (multimedia) and graphics
– instructions for multiprocessing (synchronization, memory

hierarchy)
• Design is becoming more complex
• Execute several instructions at once (multiple ALU’s)

– Speculative execution (e.g., guess branch outcomes)
– Execute instructions out-of-order (but “commit” them in program

order)
• Ultimate goal is (was?) speed

– Reliability, power-awareness are becoming important

