Machine Organization and Assembly Language Programming

- Machine Organization
 - Hardware-centric view (in this class)
 - Not at the transistor (bit) level but at the building block level (registers, adders, memory words etc.)
- Assembly Language
 - A way to learn about the Instruction Set Architecture, the interface between the hardware and the software.

Hierarchical Layers

- Top Layer: Application programs
 - Written in high-level languages: C, C++, Java, html etc
- Basic Software Layer
 - Translates programs written in high-level languages into machine language made up of a sequence of instructions (assembly language is a symbolic rendering of machine language). The translators are programs called compilers.
 - A program, the Operating System, controls the execution of the translated application programs. The O.S. is responsible for functions such as I/O, allocating storage, scheduling etc.
- Hardware
 - Executes the instructions

Layered View

Programmatic view

a = b + c;

HLL

lw	\$2,0(\$15)	7
lw	\$3, 4(\$15)	7
add	\$4, \$2, \$3	7
SW	\$4, 8(\$15)	#

load b
load c
#compute b + c

#store in a

Assembly language

What is Machine Organization (aka Computer Organization, aka Computer Architecture)?

- **Structure:** static arrangement of the parts of a computer system
- **Organization:** dynamic interaction of the parts and their control
- Implementation: design of specific building blocks
- **Performance:** behavioral study of the system or of some of its components

Alternate definition: Instruction Set Architecture (ISA) (subset of previous def.)

- ISA is the interface between hardware and software
- ISA is what is visible to the programmer (and ISA might be different for O.S. and applications)
- ISA consists of:
 - instructions (operations and how they are encoded)
 - information units (size, how they are addressed etc.)
 - registers (or more generally processor state)
 - input-output control

Computer structure: Von Neumann model

Computer Organization/Architecture

- Organization and architecture often used as synonyms
- **Organization** (in this course) refers to:
 - what are the basic blocks of a computer system, more specifically
 - basic blocks of the CPU
 - basic blocks of the memory hierarchy
 - how are the basic blocks designed, controlled, connected?
- Organization used to be transparent to the ISA.
- Today more and more of the ISA is *"exposed"* to the user/compiler in order to improve performance.

Advances in technology

Processor technology	Vacuum tubes	Transistors	Integrated circuits	VLSI
Memory technology	Vacuum tubes	Ferrite core	Semi- conductor	Semi- conductor
Processor structure	Single processor	Main frames	Micros and minis	PC's 64-bit arch Superscalar Multithreaded

Evolution of Intel Microprocessor Speeds

CSE378 Gen. Intro

Illustration of Moore's Law

Power Dissipation

CSE378 Gen. Intro

Some Computer families

- Computers that have the same (or very similar) ISA
 Compatibility of software between various implementations
- IBM
 - 704, 709, 70xx etc.. From 1955 till 1965
 - 360, 370, 43xx, 33xx From 1965 to the present
 - Power PC
- DEC
 - PDP-11, VAX From 1970 till 1985
 - Alpha (now Compaq, now HP) in 1990's

More computer families

- Intel
 - Early micros 40xx in early 70's
 - x86 (086,...,486, Pentium, Pentium Pro, Pentium 3, Pentium 4) from 1980 on
 - IA-64 (Itanium) in 2001
- SUN
 - Sparc, Ultra Sparc 1985 0n
- MIPS-SGI
 - Mips 2000, 3000, 4400, 10000 from 1985 on