MIPS History

MIPS is a computer family
— R2000/R3000 (32-bit); R4000/4400 (64-bit); R8000; R10000 (64-bit) etc.

MIPS originated as a Stanford research project under the direction of
John Hennessy

— Microprocessor without /nterlocked Pipe Stages
MIPS Co. bought by SGI

MIPS used in previous generations of DEC (then Compaq, now HP)
workstations

Now MIPS Technologies is in the embedded systems market
MIPS is a RISC

CSE378 MIPS ISA

MIPS 1s a RISC

RISC = Reduced /nstruction Set Computer
R could also stand for “regular”
All arithmetic-logical instructions are of the form

Ra « R» op Rec

MIPS (as all RISC’s) 1s a Load-Store architecture

— ALU operates only on operands that are in registers

— The only instructions accessing memory are load and store

CSE378 MIPS ISA

Registers

» Registers are the “bricks” of the CPU
« Registers are an essential part of the ISA

— Visible to the hardware and to the programmer

« Registers are

— Used for high speed storage for operands. For example, if a,b,c are
in registers 8,9,10 respectively

add $8,$9.$10 #a=b+c

— Easy to name (most computers have 32 (integer) registers visible
to the programmer and their names are 0, 1, 2, ...,31)

— Used also for addressing memory

CSE378 MIPS ISA 3

Registers (ct’d)

Not all registers are “equal”

Some are special-purpose (e.g., register 0 in MIPS is wired to the
value 0)

Some are used for integer and some for floating-point (e.g., 32 of
each in MIPS)

Some have restricted use by convention (cf. App. A pp A22-23)

Why no more than 32 or 64 registers
« Well, sometimes there is (SPARC, Itanium, Cray, Tera)
» Smaller is faster
* Instruction encoding (names have to be short)
» There can be more registers but they are invisible to the ISA

— this 1s called register renaming (see CSE 471)

CSE378 MIPS ISA

Memory system

Memory is a hierarchy of devices with faster and more
expensive ones closer to CPU

— Registers

— Caches (hierarchy: on-chip, off-chip)

— Main memory (DRAM)

— Secondary memory (disks)

CSE378 MIPS ISA

Information units

* Basic unit is the bit (has value 0 or 1)

 Bits are grouped together in information units:
— Byte = 8 bits
— Word =4 bytes (= 32 bits: the length of a MIPS integer register)
— Double word = 2 words
— eftc.

CSE378 MIPS ISA

Memory addressing

 Memory is a single-dimensional array of information units

— FEach unit has the same

size

— Each unit has its own address

— Address of an unit and contents of the unit at that address are

different
0
%
address

-123
17
0

CSE378 MIPS ISA

:

contents

Addressing

In most of today’s computers, the basic I-unit that can be
addressed is a byte

— MIPS 1s byte addressable

The address space 1s the set of all I-units that a program
can reference

The address space is tied to the length of the registers
MIPS has 32-bit registers. Hence its address space is 4G bytes

Older micros (minis) had 16-bit registers, hence 64 KB address
space (too small)

Some current (Alpha, Itanium, Sparc, Altheon, Pentium 4-EMT64)
machines have 64-bit registers, hence an enormous address space

CSE378 MIPS ISA 8

The CPU - Instruction Execution Cycle

« The CPU executes a program by repeatedly following this
cycle
1. Fetch the next instruction, say instruction i
2. Execute instruction i
3. Compute address of the next instruction, say j
4. Go back to step 1

* Of course we’ll optimize this but 1t’s the basic concept

CSE378 MIPS ISA

What’s 1in an instruction?

* An instruction tells the CPU
— the operation to be performed via the OPCODE

— where to find the operands (source and destination)

* For a given instruction, the ISA specifies

— what the OPCODE means (semantics)

— how many operands are required and their types, sizes etc.(syntax)
* Operand is either

— register (integer, floating-point, PC)

— a memory address

— a constant

CSE378 MIPS ISA 10

ISA MIPS Registers

Thirty-two 32-bit registers $0,$1,...,$31 used for

— 1integer arithmetic; address calculation; temporaries; special-
purpose functions (stack pointer etc.)

A 32-bit Program Counter (PC)
Two 32-bit registers (HI, LO) used for mult. and division

Thirty-two 32-bit registers $10, $f1,...,$f31 used for
floating-point arithmetic
— Often used in pairs: 16 64-bit registers

Registers are a major part of the “state” of a process

CSE378 MIPS ISA

11

MIPS Register names and conventions

Register Name Function Comment

$0 Zero Always 0 No-op on write

$1 Sat Reserved for assembler Don’t use it

$2-3 $vO-vl Expr. Eval/funct. Return

$4-7 $a0-a3 Proc./func. Call parameters

$8-15 $t0-t7 Temporaries; volatile Not saved on proc. Calls
$16-23 $s0-s7 Temporaries Should be saved on calls
$24-25 $t8-t9 Temporaries; volatile Not saved on proc. Calls
$26-27 $k0-k1 Reserved for O.S. Don’t use them

$28 Sep Pointer to global static memory

$29 $sp Stack pointer

$30 $tp Frame pointer

$31 $ra Proc./funct return address

CSE378 MIPS ISA

12

MIPS = RISC = Load-Store architecture

Every operand must be 1n a register

— Except for some small integer constants that can be in the
instruction itself (see later)

Variables have to be loaded 1n registers
Results have to be stored in memory

Explicit Load and Store instructions are needed because
there are many more variables than the number of registers

CSE378 MIPS ISA 13

Example

« The HLL statements
a=b+c
d=a+b

« will be “translated” into assembly language as:
load b 1n register rx
load c in register ry
1Z <-1X t1y
store rz in a

t<-rz +rx

not destructive; rz still contains the value of a

store rt in d

CSE378 MIPS ISA 14

MIPS Information units

Data types and size:
— Byte
— Half-word (2 bytes)
— Word (4 bytes)
— Float (4 bytes; single precision format)
— Double (8 bytes; double-precision format)

Memory is byte-addressable

A data type must start at an address evenly divisible by its
size (in bytes)

In the little-endian environment (the one we’ll use), the
address of a data type 1s the address of its lowest byte

CSE378 MIPS ISA 15

Big-endian vs. little endian

« Byte order within a word:

3 2 |1 0 Little-endian
(we’ll use this)

0 |1 2 |3 Big-endian

CSE378 MIPS ISA 16

Addres§ing2 of gnfoormation units

[

[

L ——> <

Byte address 0

Byte address 2

o\
|~ \ alf-word address 0

Half-word address 2 e

Y

ord address 0

Byte address 5 /

\B yte address 8

alf-word address 8

ord address 8

CSE378 MIPS ISA

17

SPIM Convention

Words listed from left to right but little endians within words

[0x7fffebd0] 0x0 (10018 OXbOOOOOOl‘

/

Byte 7fffebd2 ~ Word 7{ffebd4

CSE378 MIPS ISA

0x00000005 0x0001Daff

\

Half-word 7fffebde

18

Assembly Language programming or
How to be nice to your TAs

Use lots of detailed comments

Don’t be too fancy

Use lots of detailed comments

Use words (rather than bytes) whenever possible

Use lots of detailed comments

Remember: The address of a word 1s evenly divisible by 4
Use lots of detailed comments

The word following the word at address i 1s at address i+4
Use lots of detailed comments

CSE378 MIPS ISA 19

MIPS Instruction types

Few of them (RISC philosophy)
Arithmetic

— Integer (signed and unsigned); Floating-point

Logical and Shift

— work on bit strings

LLoad and Store

— for various data types (bytes, words,...)
Compare (of values 1n registers)
Branch and jumps (flow of control)

— Includes procedure/function calls and returns

CSE378 MIPS ISA

20

Notation for SPIM instructions

* Opcode rd, s, rt

* Opcode rt, rs, immed

e where

rd 1s always a destination register (result)

rs 1s always a source register (read-only)

rt can be either a source or a destination (depends on the opcode)
immed is a 16-bit constant (signed or unsigned)

CSE378 MIPS ISA

21

