
CSE378 MIPS ISA 1

MIPS History

• MIPS is a computer family
– R2000/R3000 (32-bit); R4000/4400 (64-bit); R8000; R10000 (64-bit) etc.

• MIPS originated as a Stanford research project under the direction of
John Hennessy
– Microprocessor without Interlocked Pipe Stages

• MIPS Co. bought by SGI
• MIPS used in previous generations of DEC (then Compaq, now HP)

workstations
• Now MIPS Technologies is in the embedded systems market
• MIPS is a RISC

CSE378 MIPS ISA 2

MIPS is a RISC

• RISC = Reduced Instruction Set Computer
• R could also stand for “regular”
• All arithmetic-logical instructions are of the form

• MIPS (as all RISC’s) is a Load-Store architecture
– ALU operates only on operands that are in registers
– The only instructions accessing memory are load and store

c ba Rop R R ←

CSE378 MIPS ISA 3

Registers

• Registers are the “bricks” of the CPU
• Registers are an essential part of the ISA

– Visible to the hardware and to the programmer

• Registers are
– Used for high speed storage for operands. For example, if a,b,c are

in registers 8,9,10 respectively
add $8,$9,$10 # a = b + c

– Easy to name (most computers have 32 (integer) registers visible
to the programmer and their names are 0, 1, 2, …,31)

– Used also for addressing memory

CSE378 MIPS ISA 4

Registers (ct’d)

• Not all registers are “equal”
– Some are special-purpose (e.g., register 0 in MIPS is wired to the

value 0)
– Some are used for integer and some for floating-point (e.g., 32 of

each in MIPS)
– Some have restricted use by convention (cf. App. A pp A22-23)
– Why no more than 32 or 64 registers

• Well, sometimes there is (SPARC, Itanium, Cray, Tera)
• Smaller is faster
• Instruction encoding (names have to be short)
• There can be more registers but they are invisible to the ISA

– this is called register renaming (see CSE 471)

CSE378 MIPS ISA 5

Memory system

• Memory is a hierarchy of devices with faster and more
expensive ones closer to CPU
– Registers
– Caches (hierarchy: on-chip, off-chip)
– Main memory (DRAM)
– Secondary memory (disks)

CSE378 MIPS ISA 6

Information units

• Basic unit is the bit (has value 0 or 1)
• Bits are grouped together in information units:

– Byte = 8 bits
– Word = 4 bytes (= 32 bits: the length of a MIPS integer register)
– Double word = 2 words
– etc.

CSE378 MIPS ISA 7

Memory addressing

• Memory is a single-dimensional array of information units
– Each unit has the same size
– Each unit has its own address
– Address of an unit and contents of the unit at that address are

different

address

0
1
2

-123
17
0

contents

CSE378 MIPS ISA 8

Addressing

• In most of today’s computers, the basic I-unit that can be
addressed is a byte
– MIPS is byte addressable

• The address space is the set of all I-units that a program
can reference
– The address space is tied to the length of the registers
– MIPS has 32-bit registers. Hence its address space is 4G bytes
– Older micros (minis) had 16-bit registers, hence 64 KB address

space (too small)
– Some current (Alpha, Itanium, Sparc, Altheon, Pentium 4-EMT64)

machines have 64-bit registers, hence an enormous address space

CSE378 MIPS ISA 9

The CPU - Instruction Execution Cycle

• The CPU executes a program by repeatedly following this
cycle
1. Fetch the next instruction, say instruction i
2. Execute instruction i
3. Compute address of the next instruction, say j
4. Go back to step 1

• Of course we’ll optimize this but it’s the basic concept

CSE378 MIPS ISA 10

What’s in an instruction?

• An instruction tells the CPU
– the operation to be performed via the OPCODE
– where to find the operands (source and destination)

• For a given instruction, the ISA specifies
– what the OPCODE means (semantics)
– how many operands are required and their types, sizes etc.(syntax)

• Operand is either
– register (integer, floating-point, PC)
– a memory address
– a constant

CSE378 MIPS ISA 11

ISA MIPS Registers

• Thirty-two 32-bit registers $0,$1,…,$31 used for
– integer arithmetic; address calculation; temporaries; special-

purpose functions (stack pointer etc.)

• A 32-bit Program Counter (PC)
• Two 32-bit registers (HI, LO) used for mult. and division
• Thirty-two 32-bit registers $f0, $f1,…,$f31 used for

floating-point arithmetic
– Often used in pairs: 16 64-bit registers

• Registers are a major part of the “state” of a process

CSE378 MIPS ISA 12

MIPS Register names and conventions

Register Name Function Comment

$0 Zero Always 0 No-op on write

$1 $at Reserved for assembler Don’t use it

$2-3 $v0-v1 Expr. Eval/funct. Return

$4-7 $a0-a3 Proc./func. Call parameters

$8-15 $t0-t7 Temporaries; volatile Not saved on proc. Calls

$16-23 $s0-s7 Temporaries Should be saved on calls

$24-25 $t8-t9 Temporaries; volatile Not saved on proc. Calls

$26-27 $k0-k1 Reserved for O.S. Don’t use them

$28 $gp Pointer to global static memory

$29 $sp Stack pointer

$30 $fp Frame pointer

$31 $ra Proc./funct return address

CSE378 MIPS ISA 13

MIPS = RISC = Load-Store architecture

• Every operand must be in a register
– Except for some small integer constants that can be in the

instruction itself (see later)

• Variables have to be loaded in registers
• Results have to be stored in memory
• Explicit Load and Store instructions are needed because

there are many more variables than the number of registers

CSE378 MIPS ISA 14

Example

• The HLL statements
a = b + c
d = a + b

• will be “translated” into assembly language as:
load b in register rx

 load c in register ry
 rz <- rx + ry

 store rz in a # not destructive; rz still contains the value of a
 rt <- rz + rx
 store rt in d

CSE378 MIPS ISA 15

MIPS Information units

• Data types and size:
– Byte
– Half-word (2 bytes)
– Word (4 bytes)
– Float (4 bytes; single precision format)
– Double (8 bytes; double-precision format)

• Memory is byte-addressable
• A data type must start at an address evenly divisible by its

size (in bytes)
• In the little-endian environment (the one we’ll use), the

address of a data type is the address of its lowest byte

CSE378 MIPS ISA 16

Big-endian vs. little endian

• Byte order within a word:

0

0

123

1 2 3

Little-endian
(we’ll use this)

Big-endian

CSE378 MIPS ISA 17

Addressing of Information units
Byte address 0

Half-word address 0

Word address 0

Byte address 2

Half-word address 2

Byte address 8

Half-word address 8

Word address 8

Byte address 5

0123

CSE378 MIPS ISA 18

SPIM Convention

Words listed from left to right but little endians within words

[0x7fffebd0] 0x00400018 0x00000001 0x00000005 0x00010aff

Byte 7fffebd2 Word 7fffebd4 Half-word 7fffebde

CSE378 MIPS ISA 19

Assembly Language programming or
How to be nice to your TAs

• Use lots of detailed comments
• Don’t be too fancy
• Use lots of detailed comments
• Use words (rather than bytes) whenever possible
• Use lots of detailed comments
• Remember: The address of a word is evenly divisible by 4
• Use lots of detailed comments
• The word following the word at address i is at address i+4
• Use lots of detailed comments

CSE378 MIPS ISA 20

MIPS Instruction types

• Few of them (RISC philosophy)
• Arithmetic

– Integer (signed and unsigned); Floating-point

• Logical and Shift
– work on bit strings

• Load and Store
– for various data types (bytes, words,…)

• Compare (of values in registers)
• Branch and jumps (flow of control)

– Includes procedure/function calls and returns

CSE378 MIPS ISA 21

Notation for SPIM instructions

• Opcode rd, rs, rt
• Opcode rt, rs, immed
• where

– rd is always a destination register (result)
– rs is always a source register (read-only)
– rt can be either a source or a destination (depends on the opcode)
– immed is a 16-bit constant (signed or unsigned)

