
CSE378 Multicycle impl,. 1

Drawbacks of single cycle implementation

• All instructions take the same time although
– some instructions are longer than others;

• e.g. load is longer than add since it has to access data memory in
addition to all the other steps that add does

– thus the “cycle” has to be for the “longest path”

• Some combinational units must be replicated since used in
the same cycle
– e.g., ALU for computing branch address and ALU for computing

branch outcome
• but this is no big deal (these duplicate resources will be needed when

we will pipeline instructions)

CSE378 Multicycle impl,. 2

Alternative to single cycle

• Have a shorter cycle and instructions execute in multiple
(shorter) cycles

• The (shorter) cycle time determined by the longest delay in
individual functional units (e.g., memory or ALU etc.)

• Possibility to streamline some resources since they will be
used at different cycles

• Since there is need to keep information “between cycles”,
we’ll need to add some stable storage (registers) not
visible at the ISA level

• Not all instructions will require the same number of cycles

CSE378 Multicycle impl,. 3

Multiple cycle implementation

• Follows the decomposition of the steps for the execution
of instructions
– Cycle 1. Instruction fetch and increment PC
– Cycle 2. Instruction decode and read source registers and branch

address computation
– Cycle 3. ALU execution or memory address calculation or set PC

if branch successful
– Cycle 4. Memory access (load/store) or write register (arith/log)
– Cycle 5 Write register (load)

• Note that branch takes 3 cycles, load takes 5 cycles, all
others take 4 cycles

CSE378 Multicycle impl,. 4

Instruction fetch

• Because fields in the instruction are needed at different
cycles, the instruction has to be kept in stable storage,
namely need to introduce an Instruction Register (IR)

• The register transfer level actions during this step
IR ← Memory[PC]
PC ← PC + 4

• Resources required
– Memory (but no need to distinguish between instruction and data

memories; later on we will because the need will reappear when
we pipeline instructions)

– Adder to increment PC
– IR

CSE378 Multicycle impl,. 5

Instruction decode and read source registers

• Instruction decode: send opcode to control unit and…(see
later)

• Perform “optimistic” computations that are not harmful
– Read rs and rt and store them in non-ISA visible registers A and B

that will be used as input to ALU
A ← REG[IR[25:21]] (read rs)
B ← REG[IR[20:16]] (read rt)
– Compute the branch address just in case we had a branch!
ALUout ← PC +(sign-ext(IR[15:0]) *4 (ALUout is also a non-ISA

visible register)
• New resources

– A, B, ALUout

CSE378 Multicycle impl,. 6

ALU execution

• If instruction is R-type
ALUout ←A op. B

• If instruction is Immediate
 ALUout ←A op. sign-extend(IR[15:0])

• If instruction is Load/Store
 ALUout ← A + sign-extend(IR[15:0])

• If instruction is branch
If (A=B) then PC ← ALUout (note this is the ALUout computed in

the previous cycle)

• No new resources

CSE378 Multicycle impl,. 7

Memory access or ALU completion

• If Load
MDR ← Memory[ALUout] (MDR is the Memory Data Register

non-ISA visible register)

• If Store
Memory[ALUout] ← B

• If arith
Reg[IR[15:11]] ← ALUout

• New resources
– MDR

CSE378 Multicycle impl,. 8

Load completion

• Write result register
Reg[IR[20:16]] ← MDR

CSE378 Multicycle impl,. 9

Streamlining of resources (cf. Figure 5.26)

• Comparing data path with that of a single cycle
implementation
– No distinction between instruction and data memory
– Only one ALU
– But a few more muxes and registers (IR, MDR etc.)

CSE378 Multicycle impl,. 10

Control Unit for Multiple Cycle
Implementation

• Control is more complex than in single cycle since:
– Need to define control signals for each step
– Need to know which step we are on

• Two methods for designing the control unit
– Finite state machine and hardwired control (extension of the single

cycle implementation)
– Microprogramming (read the CD about it)

CSE378 Multicycle impl,. 11

What are the control signals needed?
(cf. Fig 5.27)

• Let’s look at control signals needed at each of 5 steps
• Signals needed for

– reading/writing memory
– reading/writing registers
– control the various muxes
– control the ALU (recall how it was done for single cycle

implementation)

CSE378 Multicycle impl,. 12

Instruction fetch

• Need to read memory
– Choose input address (mux with signal IorD = 0)
– Set MemRead signal
– Set IRwrite signal (note that there is no write signal for MDR;

Why?)

• Set sources for ALU
– Source 1: mux set to “come from PC” (signal ALUSrcA = 0)
– Source 2: mux set to “constant 4” (signal ALUSrcB = 01)

• Set ALU control to “+” (e.g., ALUop = 00; How about
function bits?)

CSE378 Multicycle impl,. 13

Instruction fetch (PC increment;
cf. Figure 5.28)

• Set the mux to store in PC as coming from ALU (signal
PCsource = 01)

• Set PCwrite
– Note: this could be wrong if we had a branch but it will be

overwritten in that case; see step 3 of branch instructions

CSE378 Multicycle impl,. 14

Instruction decode and read source registers

• Read registers in A and B
– No need for control signals. This will happen at every cycle. No

problem since neither IR (giving names of the registers) nor the
registers themselves are modified. When we need A and B as
sources for the ALU, e.g., in step 3, the muxes will be set
accordingly

• Branch target computations. Select inputs for ALU
– Source 1: mux set to “come from PC” (signal ALUSrcA = 0)
– Source 2: mux set to “come from IR, sign-extended, shifted left 2”

(signal ALUSrcB = 11)

• Set ALU control to “+” (ALUop = 00)

CSE378 Multicycle impl,. 15

Concept of “state”

• During steps 1 and 2, all instructions do the same thing
• At step 3, opcode is directing

– What control lines to assert (it will be different for a load, an add,
a branch etc.)

– What will be done at subsequent steps (e.g., access memory,
writing a register, fetching the next instruction)

• At each cycle, the control unit is put in a specific state that
depends only on the previous state and the opcode
– (current state, opcode) → (next state) Finite state machine (cf.

CSE370, CSE 322)

CSE378 Multicycle impl,. 16

The first two states

• Since the data flow and the control signals are the same for
all instructions in step 1 (instr. fetch) there is only one state
associated with step 1, say state 0

• And since all operations in the next step are also always
the same, we will have the transition
– (state 0, all) → (state 1)

CSE378 Multicycle impl,. 17

Customary notation

Instruction fetch

(state 0)

Memread

ALUSrcA = 0

IorD = 0

Irwrite

ALUsrcB = 01

ALUop =00

Pcwrite

Pcsource = 00

ALUSrcA = 0

ALUsrcB = 11

ALUop =00No label because transition
is always taken

Instruction decode and
read source registers

(state 1)

CSE378 Multicycle impl,. 18

Transitions from State 1

• After the decode, the data flow depends on the type of
instructions:
– Register-Register : Needs to compute a result and store it
– Load/Store: Needs to compute the address, access memory, and in

the case of a load write the result register
– Branch: test the result of the condition and, if need be, change the

PC
– Jump: need to change the PC
– Immediate: Not shown in the figures. Do it as an exercise

CSE378 Multicycle impl,. 19

State transitions from State 1

State 0 State 1

Start

Opcode “Mem op.” Opcode “R-R.” Opcode “branch.” Opcode “jump.”

State 2

Opcode = etc

CSE378 Multicycle impl,. 20

State 2: Memory Address Computation

• Set sources for ALU
– Source 1: mux set to “come from A” (signal ALUSrcA = 1)
– Source 2: mux set to “imm. extended” (signal ALUSrcB = 10)

• Set ALU control to “+” (ALUop = 00)
• Transition from State 2

– If we have a “load” transition to State 3
– If we have a “store” transition to State 5

CSE378 Multicycle impl,. 21

State 2: Memory address computation

ALUSrcA =1

ALUSrcB = 10

ALUop = 00

State 2

State 5
State 3

Opcode “load” Opcode “store”

CSE378 Multicycle impl,. 22

One more example: State 5 --Store

• The control signals are:
– Set mux for address as coming from ALUout (IorD = 1)
– Set MemWrite
– Note that what has to be written has been sitting in B all that time

(and was rewritten, unmodified, at every cycle).

• Since the instruction is completed, the transition from State
5 is always to State 0 to fetch a new instruction.
– (State 5, always) → (State 0)

CSE378 Multicycle impl,. 23

Hardwired implementation of the control unit

• Single cycle implementation:
– Input (Opcode) ⇒ Combinational circuit (PAL) ⇒ Output signals

(data path)
– Input (Opcode + function bits) ⇒ ALU control

• Multiple cycle implementation
– Need to implement the finite state machine
– Input (Opcode + Current State -- stable storage) ⇒ Combinational

circuit (PAL) ⇒ Output signals (data path + setting next state)
– Input (Opcode + function bits + Current State) ⇒ ALU control

CSE378 Multicycle impl,. 24

Hardwired “diagram”

PAL

Opcode +
function bits

Input

Output

State Reg

To data path

