
CSE378 Pipelining 1

Pipelining

• Basic concept of assembly line
– Split a job A into n sequential subjobs (A1,A2,…,An) with each Ai

taking approximately the same time
– Each subjob is processed by a different substation (or resource) or,

equivalently, passes through a series of stages
– Subjobs of different jobs overlap their execution, i.e., when subjob

A1 of job A is finished in stage 1, subjob A2 of job A will start
executing in stage 2 while subjob B1 of job B will start executing
in stage 1

CSE378 Pipelining 2

Pipeline performance

• Latency of a single job can be longer
– because each stage takes as long as the longest one, say tmax

– because all jobs have to go through all stages even if they don’t do
anything in one of the stages

• Throughput is enhanced
– Ideally, in steady state, one job completes every tmax rather than

after (t1 + t2 + ... tn)

• In the ideal case (all ti are the same) throughput is n times
better if there are n stages. But :
– Execution time of a job could take less than n stages
– We assume that the pipeline can be kept full all the time

CSE378 Pipelining 3

Pipeline applied to instruction execution

• Multiple cycle implementation

• In pipeline mode

Ifetch Dec ALU Mem Wb

Ifetch Dec ALU Mem Wb
Instr. i

Instr. i+1

Idle time
Ifetch Dec ALU Mem Wb

Ifetch Dec ALU Mem Wb

Ifetch Dec ALU Mem Wb

Instr. i

Instr. i+1
Instr. i+2

CSE378 Pipelining 4

Pipeline parallelism

• Note that at any given time after the pipeline is full, we
have 5 instructions in progress; however each individual
instruction has a longer latency

Ifetch Dec ALU Mem Wb

Ifetch Dec ALU Mem Wb

Ifetch Dec ALU Mem Wb

Ifetch Dec ALU Mem Wb

Ifetch Dec ALU Mem Wb

Ifetch Dec ALU Mem Wb

5 instructions in progress

 t t+1 t +2 t+3 t+4 t+5 t +6 t+7 t+8 t+9

Instr. i

Instr. i+1

Instr. i+2

Instr. i+3

Instr. i+4
Instr. i+5

CSE378 Pipelining 5

Pipeline implementation requirements

• 5 stages are active on 5 different instructions
• Thus all the resources needed for single cycle

implementation will be required (at least)
• All stages are independent and isolated from each other.

This implies that all information gathered at stage i needed
in stages i+1, i+2 etc…must be kept and passed from stage
to stage.

• For that purpose we will use “pipeline registers” between
each stage

CSE378 Pipelining 6

Pipeline data path (highly abstracted)

IF ID EX Mem WB

IF/ID ID/EX EX/Mem Mem/WB

CSE378 Pipelining 7

Examples of what to store in pipeline registers

• The following is not an exhaustive list (just a sample)
• The register number where the result will be stored

– Known at stage 2; needed at stage 5

• The register number of the data containing the contents of
a “store” as well as the contents of that register
– Known at stage 2; needed at stage 4

• The immediate value
– Known at stage 2; needed at stage 3

• The updated PC (we’ll see why later)
• etc ..

CSE378 Pipelining 8

Pipeline data path (a little less abstracted)

• Let’s look back at Fig. 5.15 (Single cycle implementation)
and see where the pipeline registers should be put and
what additional resources, if any, are needed.

CSE378 Pipelining 9

Hazards

• Hazards are what prevents the pipeline to be ideal
• Three types of hazards:

– Structural where two instructions at different stages want to use
the same resource. Solved by using more resources (e.g.,
instruction and data memory; several ALU’s)

– Data hazards when an instruction in the pipeline is dependent on
another instruction still in the pipeline. Some of these hazards will
be resolved by bypassing and some will result in the pipeline being
stalled

– Control hazards which happens on a successful branch (or
procedure call/return). We’ll investigate several techniques to take
care of these hazards.

CSE378 Pipelining 10

Notation (cf. Figure 6.11)

• Pipeline registers keeping information between stages
labeled by the names of the stages they connect (IF/ID,
ID/EX, etc.)

• Information flows from left to right except for
– writing the result register (potential for data hazard)
– modifying the PC (potential for control hazard)

CSE378 Pipelining 11

Tracing one instruction through all 5 stages
(St 1)

• Stage 1: Instruction fetch and increment PC (same for all
instructions)
– Instruction fetched from instruction memory. The instruction will

be needed in subsequent stages. Hence stored in IF/ID
• recall (i) the IR register in multiple cycle implementation, and (ii)

that in single cycle implementation we had two “memories”, one for
instruction and one for data

– PC ← PC + 4
• The incremented PC will be needed to fetch the next instruction at the

next cycle but it will also be needed if we have to do branch target
computation. Hence incremented PC saved in IF/ID

– Resources needed: Instruction memory and ALU
– IF/ID contains instruction and incremented PC

CSE378 Pipelining 12

Tracing one instruction through all 5 stages
(St 2)

• Stage 2: Instruction decode and register read (same for all
instructions)
– We save in ID/EX everything that can be needed in next stages:

• The instruction and the incremented PC (from IF/ID) (e.g., function
bits can be needed, the name of the register to be written etc.)

• The contents of registers rs and rt (recall registers A and B)
• The sign extended immediate field (for imm. Inst., load/store, branch)
• Control lines set-ups. We’ll deal with control later
• Note that we do not compute the branch target address here (why?).

– Resources needed: register file, control unit
– ID/EX contains PC, instruction, contents of rs and rt, extended

imm. Field, control lines set-ups

CSE378 Pipelining 13

Tracing one instruction through all 5 stages
(St 3)

• Stage 3: depends on the type of instruction being executed.
Let’s assume a Load. Hence this stage is “address
computation”
– ALU sources come from ID/EX (rs and immediate field)
– ALU result stored in EX/Mem
– Contents of rs, rt, and imm. field not needed any longer
– Looks like PC not needed either but we’ll keep it because of

possible exceptions (see later in the course)
– Need to keep in EX/Mem part of the instruction (name of the rt

register) and the indication we have a load

CSE378 Pipelining 14

Stage 3 (ct’d)

– Resource needed: ALU
– But if we had a branch we need two ALU’s, one for the branch

target computation and one for comparing registers.
– EX/Mem needs to keep

• result of ALU (for load/store and arith. instructions)
• name of result register (for load and arith. instructions)
• contents of rs (for store)
• PC (in case of exceptions)

CSE378 Pipelining 15

Tracing one instruction through all 5 stages
(St 4)

• Stage 4: Access data memory. Still assuming we have a
load
– Access data memory with address kept in EX/Mem
– Keep result of load in Mem/WB
– Resource needed: Data memory
– Mem/WB needs to keep

• Result of load if load instruction
• Result of arith. Instr. if arith instr (from EX/Mem)
• Name of result register
• No need to keep PC any longer (no exception occurs in last stage)

CSE378 Pipelining 16

Tracing one instruction through all 5 stages
(St 5)

• Stage 5: Write back register (for load and arith)
– Contents of what to write and where to write it in Mem/WB
– Nothing to be kept
– Resource needed: register file
– Ah! But registers were also needed in Stage 2!

• We allow writing registers in first part of cycle and reading registers
in second part of cycle

CSE378 Pipelining 17

Summary of requirements of ideal pipeline
data path

• Stages 1 and 2: info to be kept is similar for all instructions
• The width of the pipeline registers must be such that it fits

the “maximum” amount of info that will be needed
• Instructions (except branches, see soon) must pass through

all stages even if nothing is done in that stage
• The “state of the machine” (ISA visible registers) is

modified only in the last stage (except for PC and when
branches occur)

