
CSE378 Procedures. 1

Program and memory layout

• By convention in MIPS the layout is:

– Note that only half of the addressing
 space is taken by user
 Other half is O.S.

Stack

Reserved 40000

Program text
1000 0000

7fff ffff

Static data
Dynamic data

CSE378 Procedures. 2

Procedures

• Procedures/functions are the major program structuring
mechanism

• Calling and returning form a procedure requires a protocol
between caller and callee

• Protocol is based on conventions

CSE378 Procedures. 3

Procedures/Functions -- Protocol

• Each machine (compiler?) has its own set of protocol(s)
• Protocol: combination of hardware/software

– e.g., “jal” is hardware
– use of register $29 as $sp is software

• Protocol: sequence of steps to be followed at each call and
each return
– controlled by hardware and/or software

• In RISC machines
– hardware performs simple instructions
– software (compiler/assembler) controls sequence of instructions

CSE378 Procedures. 4

Program stack

• Each executing program (process) has a stack
• Stack = dynamic data structure accessed in a LIFO manner
• Program stack automatically allocated by O.S.
• At the start of the program, register $sp ($29 in MIPS) is

automatically loaded to point to the first empty slot on top
of stack
– After that it will be your responsibility to manage $sp

• By convention, stack grows towards lower addresses
– to allocate new space (i.e., when you push), decrement $sp
– to free space on top of stack (pop), increment $sp

CSE378 Procedures. 5

Push operation

• push adds an item on top of stack
– one instruction to manipulate the data, e.g. “sw $6,0($sp)”
– one instruction to adjust the stack pointer e.g., “addi $sp,$sp,-4”

(the assembler will accept “subu $sp,4”)

before after

46

-72

???

46

-72

127

???

8($sp)

4($sp)

$sp

12($sp)

8($sp)

4($sp)

$sp

127 $6 127 $6

CSE378 Procedures. 6

Pop operation

• pop removes the item on top of stack and stores it in a
register
– one instruction to adjust the stack pointer e.g., “addiu $sp,$sp,4”
– one instruction to manipulate the data, e.g. “lw $6,0($sp)”

after before

46

-72

127

46

-72

127

???

8($sp)

4($sp)

$sp

12($sp)

8($sp)

4($sp)

$sp

127 $6 453 $6
Now this has
become “garbage”

CSE378 Procedures. 7

Procedure call requirements (caller/callee)

• Caller must pass the return address to the callee
• Caller must pass the parameters to the callee
• Caller must save what is volatile (registers) and could be

used by the callee
--
• Callee must save the return address (in case it becomes a

caller)
• Callee must provide (stack) storage for its own use
--
• Caller/callee should support recursive calls

CSE378 Procedures. 8

Mechanism

• Registers are used for
– passing return address in

$ra
• jal target

– passing a small number of
parameters (up to 4 in $a0
to $a3)

– keeping track of the stack
($sp)

– returning function values
(in $v0 and $v1)

• Stack is used for
– saving temporary registers

to be used by caller/callee
– saving info about the caller

(return address)
– passing parameters if

needed
– allocating local data for the

called procedure

CSE378 Procedures. 9

Procedure calls and register conventions
Register Name Function Comment

$0 Zero Always 0 No-op on write

$1 $at Reserved for assembler Don’t use it

$2-3 $v0-v1 Expr. Eval/funct. Return

$4-7 $a0-a3 Proc./func. Call parameters

$8-15 $t0-t7 Temporaries; volatile Not saved on proc. Calls

$16-23 $s0-s7 Temporaries Should be saved on calls

$24-25 $t8-t9 Temporaries; volatile Not saved on proc. Calls

$26-27 $k0-k1 Reserved for O.S. Don’t use them

$28 $gp Pointer to global static memory

$29 $sp Stack pointer

$30 $fp Frame pointer

$31 $ra Proc./funct return address

CSE378 Procedures. 10

Who does what on a call (one sample
protocol)

• Caller
– Saves any volatile register

($t0-$t9) that has contents that
need to be kept

– Puts up to 4 arguments in $a0-
$a3

– If more than 4 arguments,
pushes the rest on the stack

– calls with jal instruction

• Callee
– saves $ra on stack
– saves any non-volatile register

($s0-s7) that it will use

CSE378 Procedures. 11

Who does what on return

• Callee
– restores any non-volatile

register ($s0-$s7) it has used
– restores $ra
– puts function results in $v0-

$v1
– adjusts $sp
– returns to caller with “jr $ra”

• Caller
– restores any volatile register it

had saved
– examines $v0-$v1 if needed

CSE378 Procedures. 12

Example of a call sequence

• Assume 2 arguments in $t0 and $t3 and we want to save
the contents of $t6 and $t7

move $a0,$t0 #1st argument in $a0
move $a1,$t3 #2nd argument in $a1
subu $sp,$sp,8 #room for 2 temps on stack
sw $t6,8($sp) #save $t6 on stack

 sw $t7,4($sp) #save $t7 on stack
 jal target

• Assume the callee does not need to save registers
target: sw $ra,0($sp) #save return address
 subu $sp,$sp,4 # on stack

CSE378 Procedures. 13

Return from the previous sequence

• The callee will have put the function results in $v0-$v1
addu $sp,$sp,4 #pop
lw $ra,0($sp) #return address in $ra
jr $ra #to caller

• The caller will restore $t6 and $t7 and adjust stack
lw $t6,8($sp)
lw $t7,4($sp)
addu $sp,$sp,8

