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Program and memory layout

• By convention in MIPS the layout is:

– Note that only half of the addressing
     space is taken by user
     Other half is O.S.

Stack

Reserved 40000

Program text
1000 0000

7fff ffff

Static data
Dynamic data
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Procedures

• Procedures/functions are the major program structuring 
mechanism

• Calling and returning form a procedure requires a protocol 
between caller and callee

• Protocol is based on conventions
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Procedures/Functions -- Protocol

• Each machine (compiler?) has its own set of protocol(s)
• Protocol: combination of hardware/software

– e.g., “jal” is hardware
– use of register $29 as $sp is software

• Protocol: sequence of steps to be followed at each call and 
each return
– controlled by hardware and/or software

• In RISC machines
– hardware performs simple instructions
– software (compiler/assembler) controls sequence of instructions



CSE378 Procedures. 4

Program stack

• Each executing program (process) has a stack
• Stack = dynamic data structure accessed in a LIFO manner
• Program stack automatically allocated by O.S.
• At the start of the program, register $sp ($29 in MIPS) is 

automatically loaded to point to the first empty slot on top 
of stack
– After that it will be your responsibility to manage $sp

• By convention, stack grows towards lower addresses
– to allocate new space (i.e., when you push), decrement $sp
– to free space on top of stack (pop), increment $sp
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Push operation

• push adds an item on top of stack
– one instruction to manipulate the data, e.g. “sw   $6,0($sp)”
– one instruction to adjust the stack pointer e.g., “addi  $sp,$sp,-4” 

(the assembler will accept “subu $sp,4”)

before after

46

-72 

???

46

-72

127 

???

8($sp)

4($sp)

$sp

12($sp)

8($sp)

4($sp)

$sp

127                 $6 127                 $6
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Pop operation

• pop removes the item on top of stack and stores it in a 
register
– one instruction to adjust the stack pointer e.g., “addiu  $sp,$sp,4”
– one instruction to manipulate the data, e.g. “lw   $6,0($sp)”

after before

46

-72 

127

46

-72

127 

???

8($sp)

4($sp)

$sp

12($sp)

8($sp)

4($sp)

$sp

127                 $6 453                 $6
Now this has 
become “garbage”
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Procedure call requirements (caller/callee)

• Caller must pass the return address to the callee
• Caller must pass the parameters to the callee
• Caller must save what is volatile (registers) and could be 

used by the callee
--------------------------------------------------------------------------
• Callee must save the return address (in case it becomes a 

caller)
• Callee must provide (stack) storage for its own use
--------------------------------------------------------------------------
• Caller/callee should support recursive calls
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Mechanism

• Registers are used for
– passing return address in 

$ra
• jal    target

– passing a small number of 
parameters (up to 4 in $a0 
to $a3)

– keeping track of the stack 
($sp)

– returning function values 
(in $v0 and $v1)

• Stack is used for
– saving temporary registers 

to be used by caller/callee
– saving info about the caller 

(return address)
– passing parameters if 

needed
– allocating local data for the 

called procedure
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Procedure calls and register conventions
Register Name Function Comment 

$0 Zero Always 0 No-op on write 

$1 $at Reserved for assembler Don’t use it 

$2-3 $v0-v1 Expr. Eval/funct. Return  

$4-7 $a0-a3 Proc./func. Call parameters  

$8-15 $t0-t7 Temporaries; volatile Not saved on proc. Calls 

$16-23 $s0-s7 Temporaries Should be saved on calls 

$24-25 $t8-t9 Temporaries; volatile Not saved on proc. Calls 

$26-27 $k0-k1 Reserved for O.S. Don’t use them 

$28 $gp Pointer to global static memory  

$29 $sp Stack pointer  

$30 $fp Frame pointer  

$31 $ra Proc./funct return  address  
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Who does what on a call (one sample 
protocol)

• Caller
– Saves any volatile register 

($t0-$t9) that has contents that 
need to be kept

– Puts up to 4 arguments in $a0-
$a3

– If more than 4 arguments, 
pushes the rest on the stack

– calls with jal instruction

• Callee
– saves $ra on stack 
– saves any non-volatile register 

($s0-s7) that it will use
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Who does what on return

• Callee
– restores any non-volatile 

register ($s0-$s7) it has used
– restores $ra
– puts function results in $v0-

$v1
– adjusts $sp
– returns to caller with “jr   $ra”

• Caller
– restores any volatile register it 

had saved
– examines $v0-$v1 if needed
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Example of a call sequence

• Assume 2 arguments in $t0 and $t3 and we want to save 
the contents of $t6 and $t7

move $a0,$t0 #1st argument in $a0
move $a1,$t3 #2nd argument in $a1
subu $sp,$sp,8 #room for 2 temps on stack
sw $t6,8($sp) #save $t6 on stack

     sw $t7,4($sp) #save $t7 on stack
     jal target

• Assume the callee does not need to save  registers
target:     sw   $ra,0($sp) #save return address
               subu $sp,$sp,4            # on stack
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Return from the previous sequence

• The callee will have put the function results in $v0-$v1
addu $sp,$sp,4 #pop
lw $ra,0($sp) #return address in $ra
jr $ra #to caller

• The caller will restore $t6 and $t7 and adjust stack
lw $t6,8($sp)
lw $t7,4($sp)
addu $sp,$sp,8


