
CSE378 Single cycle
implementation.

1

Levels in Processor Design

• Circuit design
– Keywords: transistors, wires etc.Results in gates, flip-flops etc.

• Logical design
– Putting gates (AND, NAND, …) and flip-flops together to build

basic blocks such as registers, ALU’s etc (cf. CSE 370)
• Register transfer

– Describes execution of instructions by showing data flow between
the basic blocks

• Processor description (the ISA)
• System description

– Includes memory hierarchy, I/O, multiprocessing etc

CSE378 Single cycle
implementation.

2

Register transfer level

• Two types of components (cf. CSE 370)
– Combinational : the output is a function of the input (e.g., adder)
– Sequential: state is remembered (e.g., register)

CSE378 Single cycle
implementation.

3

Synchronous design

• Use of a periodic clock
– edge-triggered clocking determines when signals can be read and

when the output of circuits is stable
– Values in storage elements can be updated only at clock edges
– Clock tells when events can occur, e.g., when signals sent by

control unit are obeyed in the ALU

Stor. Elem 1 Stor. Elem 2Comb.logic

Clock cycle

Note: the same
storage element can
be read/written in
the same cycle

CSE378 Single cycle
implementation.

4

Processor design: data path and control unit

Memory
hierarchy

control ALU

Registers
PC

state

Memory
bus

CPU

Data path

Combinational

Sequential

CSE378 Single cycle
implementation.

5

Processor design

• Data path
– How does data flow between various basic blocks
– What operations can be performed when data flows
– What can be done in one clock cycle

• Control unit
– Sends signals to data path elements
– Tells what data to move, where to move it, what operations are to

be performed

• Memory hierarchy
– Holds program and data

CSE378 Single cycle
implementation.

6

Data path basic building blocks.
Storage elements

• Basic building block (at the RT level) is a register
• In our mini-MIPS implementation registers will be 32-bits
• A register can be read or written

Input bus

Output bus

Write enable signalRegister

CSE378 Single cycle
implementation.

7

Register file

• Array of registers (32 for the integer registers in MIPS)
• ISA tells us that we should be able to:

– read 2 registers, write one register in a given instruction (at this
point we want one instruction per cycle)

– Register file needs to know which registers to read/write
Write register number

Write enable

Write data input bus

Read data output bus 0

Read data output bus 1

Read register number bus 0

Read register number bus 1

Register file

CSE378 Single cycle
implementation.

8

Memory

• Conceptually, like register file but much larger
• Can only read one location or write to one location per

cycle

Write enable

Write data bus Read data bus

Read control signal
Write memory address

Read memory address

Memory

CSE378 Single cycle
implementation.

9

Combinational elements

Multiplexor (MUX): selects the value of one of its
inputs to be routed to the output

Input busses

Output bus

Select control signal

Demultiplexor (deMUX or SEL): routes its input
to one of its outputs

Select control signal

Output busses

Input bus

Mux

Sel

CSE378 Single cycle
implementation.

10

Arithmetic and Logic Unit (ALU -
combinational)

• Computes (arithmetic or logical operation) output from its
two inputs

ALU

Input bus 0

Input bus 1

Output bus

Zero result bit

ALU control
(opcode/function)

CSE378 Single cycle
implementation.

11

Putting basic blocks together (skeleton of data
path for arith/logical operations)

Write register number

Write enable

Write data input bus

Read data 0

Read data 1

Read register number bus 0

Read register number bus 1

Register file

Zero result bit

ALU control
(opcode/function)

ALU

CSE378 Single cycle
implementation.

12

Introducing instruction fetch

Read data 0

Read data 1

Zero result bit

ALU control
(opcode/function)

Read Reg #0

Read Reg #1

Write Reg #

Write data

Reg. File

ALU

PC
Instruction address Instr. memory

CSE378 Single cycle
implementation.

13

PC has to be incremented (assume no branch)

PC
Instruction address Instr. memory

4
Adder

Instruction

CSE378 Single cycle
implementation.

14

Load-Store instructions

Read Reg #0

Read Reg #1

Write Reg #

Reg. File

ALU

Instruction

Data from “load”

Data
memory

16-bit offset

32-bitSign

extend

Read data 0

“store” data

R/W address

Read enable

Write enable

CSE378 Single cycle
implementation.

15

Data path for straight code
(reg-reg,imm,load/store)

Read Reg #0

Read Reg #1

Write Reg #

Reg. File

ALU

Instruction

Data for result register

Data
memory

16-bit offset

32-bitSign.

ext

Read data 0

“store” data

R/W address

Read enable

Write enable

Read data 1

Mux

CSE378 Single cycle
implementation.

16

Branch data path

PC

4

Inst.

memory

Adder

ALU

32-bit

16-bit
Sign.
ext

sll 2

Instruction

CSE378 Single cycle
implementation.

17

Control Unit

• Control unit sends control signals to data path and memory
depending
– on the opcode (and function field)
– results in the ALU (for example for Zero test)

• These signals control
– muxes; read/write enable for registers and memory etc.

• Some “control” comes directly from instruction
– register names

• Some actions are performed at every instruction so no need
for control (in this single cycle implementation)
– incrementing PC by 4; reading instr. memory for fetching next

inst.

CSE378 Single cycle
implementation.

18

Building the control unit

• Decompose the problem into
– Data path control (register transfers)
– ALU control

• Setting of control lines by control unit totally specified in
the ISA

– for ALU by opcode + function bits if R-R format
– for register names by instruction (including opcode)
– for reading/writing memory and writing register by opcode
– muxes by opcode
– PC by opcode + result of ALU

CSE378 Single cycle
implementation.

19

Example

• Limit ourselves to:
– R-R instructions: add, sub, and, or, slt –

• OPcode = 0 but different function bits
– Load-store: lw, sw
– Branch: beq

• ALU control
– Need to add for: add, lw, sw
– Need to sub for: sub, beq
– Need to and for :and
– Need to or for :or
– Need to set less than for : slt

CSE378 Single cycle
implementation.

20

ALU Control

• ALU control: combination of opcode and function bits
• Decoding of opcodes yields 3 possibilities hence 2 bits

– AluOp1 and ALUOp2

• ALU control:
– Input 2 ALUop bits and 6 function bits
– Output one of 5 possible ALU functions
– Of course lots of don’t care for this *very* limited implementation

CSE378 Single cycle
implementation.

21

Implementation of Overall Control Unit

• Input: opcode (and function bits for R-R instructions)
• Output: setting of control lines
• Can be done by logic equations
• If not too many, like in RISC machines

– Use of PAL’s (cf. CSE 370).
– In RISC machines the control is “hardwired”

• If too large (too many states etc.)
– Use of microprogramming (a microprogram is a hardwired

program that interprets the ISA)

• Or use a combination of both techniques (Pentium)

CSE378 Single cycle
implementation.

22

Where are control signals needed
(cf. Figure 5.15)

• Register file
– RegWrite (Register write signal for R-type, Load)
– RegDst (Register destination signal: rd for R-type, rt for Load)

• ALU
– ALUSrc (What kind of second operand: register or immediate)
– ALUop (What kind of function: ALU control for R-type)

• Data memory
– MemRead (Load) or MemWrite (Store)
– MemtoReg (Result register written from ALU or memory)

• Branch control
– PCSrc (PC modification if branch is taken)

CSE378 Single cycle
implementation.

23

How are the control signals asserted

• Decoding of the opcode by control unit yields
– Control of the 3 muxes (RegDst, ALUSrc,MemtoReg): 3 control

lines
– Signals for RegWrite, Memread,Memwrite: 3 control lines
– Signals to activate ALU control (e.g., restrict ourselves to 2)
– Signal for branch (1 control line)

• decoding of opcode ANDed with ALU zero result

• Input Opcode: 6 bits
• Output 9 control lines (see Figure 5.17)

