Levels 1in Processor Design

Circuit design
— Keywords: transistors, wires etc.Results in gates, flip-flops etc.
Logical design

— Putting gates (AND, NAND, ...) and flip-flops together to build
basic blocks such as registers, ALU’s etc (cf. CSE 370)

Register transfer

— Describes execution of instructions by showing data flow between
the basic blocks

Processor description (the ISA)

System description
— Includes memory hierarchy, I/O, multiprocessing etc

CSE378 Single cycle
implementation.



Register transfer level

* Two types of components (cf. CSE 370)
— Combinational : the output is a function of the input (e.g., adder)
— Sequential: state 1s remembered (e.g., register)

CSE378 Single cycle
implementation.



Synchronous design

« Use of a periodic clock

— edge-triggered clocking determines when signals can be read and
when the output of circuits is stable

— Values in storage elements can be updated only at clock edges

— Clock tells when events can occur, €.g., when signals sent by
control unit are obeyed in the ALU

Clock cycle

Stor. Elem 1

—C . Stor. Elem 2

CSE378 Single cycle
implementation.

Note: the same
storage element can
be read/written in
the same cycle



Processor design: data path and control unit

CPU
Combinational
Memory control ALU 1
hierarchy
A . PC -
Registers T
‘\ state | < Sequential
\
Memo \
vy Data path
bus
CSE378 Single cycle 4

implementation.



Processor design

e Data path
— How does data flow between various basic blocks
— What operations can be performed when data flows
— What can be done in one clock cycle

« Control unit
— Sends signals to data path elements

— Tells what data to move, where to move it, what operations are to
be performed

 Memory hierarchy
— Holds program and data

CSE378 Single cycle
implementation.



Data path basic building blocks.
Storage elements

« Basic building block (at the RT level) 1s a register

* In our mini-MIPS implementation registers will be 32-bits

* A register can be read or written

_ Input bus

A

A 4

Register

< Write enable signal

r

Output bus

CSE378 Single cycle
implementation.



Register file

« Array of registers (32 for the integer registers in MIPS)
* [SA tells us that we should be able to:

— read 2 registers, write one register in a given instruction (at this
point we want one instruction per cycle)

— Register file needs to know which registers to read/write
Read register number bus 0

Write register number
Write enable vV v Y v Read register number bus 1

, Read data output bus 0

A 4

Write data input bus Register file

\4

Read data output bus 1

CSE378 Single cycle 7
implementation.



Memory

* Conceptually, like register file but much larger

e (Can only read one location or write to one location per

cycle

Write memory address

Write enable 1

A

Read memory address

Write data bus

A 4

Memory

Read control signal

CSE378 Single cycle
implementation.

> Read data bus



Combinational elements

Multiplexor (MUX): selects the value of one of its Input busses
inputs to be routed to the output J{ J{ J{
Select control signal ——» Mux
Demultiplexor (deMUX or SEL): routes its input Output bus
to one of its outputs
Output busses
Select control signal ——» Sel

% Input bus

CSE378 Single cycle
implementation.



Arithmetic and Logic Unit (ALU -
combinational)

e Computes (arithmetic or logical operation) output from its

two 1nputs

Zero result bit

Input bus 0 —>\J

ALU —> Output bus

Inputbus I —* /]/

ALU control
(opcode/function)

CSE378 Single cycle
implementation.

10



Putting basic blocks together (skeleton of data

path for arith/logical operations)

Write register number

Zero result bit

Read register number bus 0

Write enable — v

A 4

Register file

Read register number bus 1

[
Lt

Read data O

A

ALU

N

Write data input bus

Read data 1 ﬁol

(opcode/function

CSE378 Single cycle
implementation.

11



Introducing instruction fetch ;. reout bit

A 4

Read Reg #0 =\
Read data O

A 4

» Read Reg #1
_ ALU
»| Write Reg #
Reg. File ]
> 5 Read data | ALU control
(opcode/function

Write data

A 4

Instruction address

Instr. memory

PC

A 4

CSE378 Single cycle
implementation.

12



PC has to be incremented (assume no branch)

4,
>Adde

Instruction address

A 4

A 4

PC

A 4

Instr. memory

Instruction

CSE378 Single cycle
implementation.

13



Instruction

[.oad-Store 1nstructions

Read enable

l

16-bit offset

addrl

Data

'CSS
memory

Read data O
» Read Reg #0 >
» Read Reg #1
. ALU
»| Write Reg #
‘ Reg Fﬂe R /w
. 32-bit “store” data
ign
. /
exten /

Data from “load”

[
Lt

|

Write enable

CSE378 Single cycle
implementation.

14



Data path for straight code
(reg-reg,imm,load/store)re '

Instruction l

Read data 0
Read Reg #0 >

N Read Reg #1
Read data 1 ALU Data

A 4

A 4

A 4

A 4

A 4

Write Reg # add=1'ess
=I memory
Reg. File I
@ 32-bit [
' / “store” data

/
16-bit offset ext Write enable

A 4

Data for result register F
I Mux

CSE378 Single cycle
implementation.

15



Branch data path

A 4

<
<

Instruction

Inst.

A 4

PC

memory

L 32-bit

CSE378 Single cycle
implementation.

A 4

>ALU

16



Control Unit

Control unit sends control signals to data path and memory
depending

— on the opcode (and function field)

— results in the ALU (for example for Zero test)

These signals control
— muxes; read/write enable for registers and memory etc.

Some “control” comes directly from instruction

— register names

Some actions are performed at every instruction so no need
for control (in this single cycle implementation)

— 1incrementing PC by 4; reading instr. memory for fetching next

1nst. CSE378 Single cycle 17
implementation.



Building the control unit

* Decompose the problem into

— Data path control (register transfers)
— ALU control

 Setting of control lines by control unit totally specified in
the ISA
— for ALU by opcode + function bits if R-R format
— for register names by instruction (including opcode)
— for reading/writing memory and writing register by opcode

— muxes by opcode
— PC by opcode + result of ALU

CSE378 Single cycle
implementation.



Example

Limit ourselves to:

— R-R instructions: add, sub, and, or, slt —
* OPcode = 0 but different function bits

— Load-store: lw, sw
— Branch: beq

ALU control
— Need to add for: add, lw, sw
— Need to sub for: sub, beq
— Need to and for :and
— Need to or for :or
— Need to set less than for : slt

CSE378 Single cycle
implementation.

19



ALU Control

* ALU control: combination of opcode and function bits

e Decoding of opcodes yields 3 possibilities hence 2 bits
— AluOpl and ALUOp2

« ALU control:
— Input 2 ALUop bits and 6 function bits
— Output one of 5 possible ALU functions
— Of course lots of don’t care for this *very* limited implementation

CSE378 Single cycle 20
implementation.



Implementation of Overall Control Unit

Input: opcode (and function bits for R-R instructions)
Output: setting of control lines
Can be done by logic equations

If not too many, like in RISC machines
— Use of PAL’s (cf. CSE 370).
— In RISC machines the control is “hardwired”

If too large (too many states etc.)

— Use of microprogramming (a microprogram is a hardwired
program that interprets the ISA)

Or use a combination of both techniques (Pentium)

CSE378 Single cycle 21
implementation.



Where are control signals needed
(ct. Figure 5.15)

Register file
— RegWrite (Register write signal for R-type, Load)
— RegDst (Register destination signal: rd for R-type, rt for Load)

ALU
— ALUSrc (What kind of second operand: register or immediate)

— ALUop (What kind of function: ALU control for R-type)
Data memory

— MemRead (Load) or MemWrite (Store)

— MemtoReg (Result register written from ALU or memory)
Branch control

— PCSrc (PC modification if branch is taken)

CSE378 Single cycle 22
implementation.



How are the control signals asserted

* Decoding of the opcode by control unit yields

— Control of the 3 muxes (RegDst, ALUSrc,MemtoReg): 3 control
lines

— Signals for RegWrite, Memread,Memwrite: 3 control lines
— Signals to activate ALU control (e.g., restrict ourselves to 2)
— Signal for branch (1 control line)

» decoding of opcode ANDed with ALU zero result

* Input Opcode: 6 bits
* Output 9 control lines (see Figure 5.17)

CSE378 Single cycle
implementation.

23



