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Levels in Processor Design

• Circuit design
– Keywords: transistors, wires etc.Results in gates, flip-flops etc.

• Logical design
– Putting gates (AND, NAND, …) and flip-flops together to build 

basic blocks such as registers, ALU’s etc (cf. CSE 370)
• Register transfer 

– Describes execution of instructions by showing data flow between 
the basic blocks

• Processor description (the ISA)
• System description

– Includes memory hierarchy, I/O, multiprocessing etc
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Register transfer level

• Two types of components (cf. CSE 370)
– Combinational : the output is a function of the input (e.g., adder)
– Sequential: state is remembered (e.g., register)
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Synchronous design

• Use of a periodic clock
– edge-triggered clocking determines when signals can be read and 

when the output of circuits is stable
– Values in storage elements can be updated only at clock edges
– Clock tells when events can occur, e.g., when signals sent by 

control unit are obeyed in the ALU

Stor. Elem 1 Stor. Elem 2Comb.logic

Clock cycle

Note: the same 
storage element can 
be  read/written in 
the same cycle
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Processor design: data path and control unit

Memory 
hierarchy

control ALU

Registers
PC

state

Memory 
bus

CPU

Data path

Combinational

Sequential
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Processor design

• Data path
– How does data flow between various basic blocks
– What operations can be performed when data flows
– What can be done in one clock cycle

• Control unit
– Sends signals to data path elements
– Tells what data to move, where to move it, what operations are to 

be performed

• Memory hierarchy
– Holds program and data
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Data path basic building blocks. 
Storage elements

• Basic building block (at the RT level) is a register
• In our mini-MIPS implementation registers will be 32-bits
• A register can be read or written

Input bus

Output bus

Write enable signalRegister
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Register file

• Array of registers (32 for the integer registers in MIPS)
• ISA tells us that we should be able to:

– read 2 registers, write one register in a given instruction (at this 
point we want one instruction per cycle)

– Register file needs to know which registers to read/write
Write register number

Write enable

Write data input bus

Read data output bus 0

Read data output bus 1

Read register number bus 0

Read register number bus 1

Register file
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Memory

• Conceptually, like register file but much larger
• Can only read one location or write to one location per 

cycle

Write enable

Write data bus Read data bus 

Read control signal
Write memory address

Read memory address

Memory
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Combinational elements

Multiplexor (MUX): selects the value of one of its 
inputs to be routed to the output

Input busses

Output bus

Select control signal

Demultiplexor (deMUX or SEL): routes its input 
to one of its outputs

Select control signal

Output busses

Input bus

Mux

Sel
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Arithmetic and Logic Unit (ALU - 
combinational)

• Computes (arithmetic or logical operation) output from its 
two inputs

ALU

Input bus 0

Input bus 1

Output bus

Zero result bit

ALU control 
(opcode/function)
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Putting basic blocks together (skeleton of data 
path for arith/logical operations)

Write register number

Write enable

Write data input bus

Read data 0

Read data 1

Read register number bus 0

Read register number bus 1

Register file

Zero result bit

ALU control 
(opcode/function)

ALU
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Introducing instruction fetch

Read data 0

Read data 1

Zero result bit

ALU control 
(opcode/function)

Read Reg #0

Read Reg #1

Write Reg #

Write data

Reg. File

ALU

PC
Instruction address Instr. memory
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PC has to be incremented (assume no branch)

PC
Instruction address Instr. memory

4
Adder

Instruction
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Load-Store instructions

Read Reg #0

Read Reg #1

Write Reg #

Reg. File

ALU

Instruction

Data from “load”

Data 
memory

16-bit offset

32-bitSign

extend

Read data 0

“store” data

R/W address

Read enable

Write enable
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Data path for straight code
(reg-reg,imm,load/store)

Read Reg #0

Read Reg #1

Write Reg #

Reg. File

ALU

Instruction

Data for result register

Data 
memory

16-bit offset

32-bitSign.

ext

Read data 0

“store” data

R/W address

Read enable

Write enable

Read data 1

Mux
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Branch data path

PC

4

Inst. 

memory

Adder

ALU

32-bit

16-bit
Sign.
ext

sll 2

Instruction
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Control Unit

• Control unit sends control signals to data path and memory 
depending
– on the opcode (and function field)
– results in the ALU (for example for Zero test)

• These signals control
– muxes; read/write enable for registers and memory etc.

• Some “control” comes directly from instruction
– register names

• Some actions are performed at every instruction so no need 
for control (in this single cycle implementation)
– incrementing PC by 4; reading instr. memory for fetching next 

inst.
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Building the control unit

• Decompose the problem into
– Data path control (register transfers)
– ALU control

• Setting of control lines by control unit totally specified  in 
the ISA

– for ALU by opcode + function bits if R-R format
– for register names by instruction (including opcode)
– for reading/writing memory and writing register by opcode
– muxes by opcode
– PC by opcode + result of ALU
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Example 

• Limit ourselves to:
– R-R instructions: add, sub, and, or, slt – 

• OPcode = 0 but different function bits
– Load-store: lw, sw
– Branch: beq

• ALU control
– Need to add for: add, lw, sw
– Need to sub for: sub, beq
– Need to and for :and
– Need to or for :or
– Need to set less than for : slt
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ALU Control

• ALU control: combination of opcode and function bits
• Decoding of opcodes yields 3 possibilities hence 2 bits

– AluOp1 and ALUOp2

• ALU control:
– Input 2 ALUop bits and 6 function bits
– Output one of 5 possible ALU functions
– Of course lots of don’t care for this *very* limited implementation
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Implementation of Overall Control Unit

• Input: opcode (and function bits for R-R instructions)
• Output: setting of control lines
• Can be done by logic equations
• If not too many, like in RISC machines

– Use of PAL’s (cf. CSE 370).
– In RISC machines the control is “hardwired”

• If too large (too many states etc.)
– Use of microprogramming (a microprogram is a hardwired 

program that interprets the ISA)

• Or use a combination of both techniques (Pentium)
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Where are control signals needed 
(cf. Figure 5.15)

• Register file
– RegWrite (Register write signal for R-type, Load)
– RegDst (Register destination signal: rd for R-type, rt for Load)

• ALU
– ALUSrc (What kind of second operand: register or immediate)
– ALUop (What kind of function: ALU control for R-type)

• Data memory
– MemRead (Load) or MemWrite (Store)
– MemtoReg (Result register written from ALU or memory)

• Branch control
– PCSrc (PC modification if branch is taken)
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How are the control signals asserted 

• Decoding of the opcode by control unit yields
– Control of the 3 muxes (RegDst, ALUSrc,MemtoReg): 3 control 

lines
– Signals for RegWrite, Memread,Memwrite: 3 control lines
– Signals to activate ALU control (e.g., restrict ourselves to 2)
– Signal for branch (1 control line)

• decoding of opcode ANDed with ALU zero result

• Input Opcode: 6 bits
• Output 9 control lines (see Figure 5.17)


