Evolution in memory management techniques

* In early days, single program ran on the whole machine

— used all the memory available

« Even so, there was often not enough memory to hold data
and program for the entire run

— use of overlays, i.e., static partitioning of program and data so that
parts that were not needed at the same time could share the same
memory addresses

* Soon, it was noticed that I/O was much more time
consuming than processing, hence the advent of
multiprogramming

CSE378 Virtual memory.



Multiprogramming: issues 1n memory
management

e Multiprogramming
— Several programs are resident in main memory at the same time
— When one program executes and needs I/O, it relinquishes CPU to
another program
« Some important questions from the memory management
viewpoint:
— How is one program protected from another?
— How does one program ask for more memory?
— How can a program be loaded in main memory?

CSE378 Virtual memory.



Multiprogramming: early implementations

Programs are compiled and linked wrt to address 0

Addresses that are generated by the CPU need to be
modified

— A generated address is a virtual address
— The virtual address is translated into a real or physical address

In early implementations, use of a base and length registers
— physical address = base register contents + virtual address

— 1f physical address > (base register contents + length register) then
we have an exception

CSE378 Virtual memory. 3



Relocation and length registers

Program A
Base register
Program B Program B is executing
Unallocated Length reg. Note: fragmentation (unallocated
memory) gets worse as time goes
on (more small pieces)
Program C Program must be allocated in
continuous memory locations
Still requires overlays for large
Unallocated programs

CSE378 Virtual memory. 4



Virtual memory: paging

 Basic 1dea first proposed and implemented at the
University of Manchester in the early 60’s.

» Basic i1dea 1s to divide the virtual space into chunks of the
same size, or (virtual) pages and divide also the physical
memory into physical pages or frames

* Provide a general (fully-associative) mapping between
virtual pages and frames

— This is a relocation mechanism whereby any virtual page can be
stored in any physical frame

CSE378 Virtual memory.



Paging and segmentation

« Division in equal size pages is arbitrary
— division in segments corresponding to semantic entities (objects),
e.g., function text, data arrays etc. may make more sense but...

— 1mplementation of segments of different sizes is not as easy
(although it has been done, most notably in the Burroughs series of
machines)

* Nowadays, segmentation has the connotation of groups of
pages

CSE378 Virtual memory. 6



Paging

Allows virtual address space larger than physical memory

— recall that the stack starts at the largest possible virtual address and
grows towards lower addresses while code starts at low addresses

Allows sharing of physical memory between programs
(multiprogramming) without as much fragmentation

— physical memory allocated to a program does not need to be
continuous; only an integer number of pages

Allows sharing of pages between programs (not always
simple, cf. CSE 451)

CSE378 Virtual memory. 7



[llustration of paging

Program A
Physical mem
V.p.0 Frame 0 ysieal memory
V..l Frame 1
V.p.2 Frame 2
V.p.3

Note: In general n, @ >>m

Programs A and B share
V.p.n Frame m frame O but with different
virtual page numbers

x'p'(l) Not all virtual pages of a
Program B ng program are mapped at a
given time
Mapping device
Vg

CSE378 Virtual memory. 8



Mapping device: Page table

Mapping info. for each program is kept in a page table

A page table entry (PTE) indicates the mapping of the
virtual page to the physical page
A valid bit indicates whether the mapping 1s current or not
If there 1s a memory reference (recall that a reference 1s a
virtual address) to a page with the valid bit off in its
corresponding PTE, we have a page fault

— this means we’ll have to go to disk to fetch the page

The PTE also contains a dirty bit to indicate whether the
page has been modified since it was fetched

CSE378 Virtual memory.



[llustration of page table

Program A Page table for
Program A
Vp.0 — Frame O
Vp.l \,1 2 Frame 1
Vp-2 (1) = \ Frame 2
V.p.3
-l 0 /
Vpn \ Frame m
Valid bits
V.p.0 0
V..l
Program B 572 1l 0
V.p.q 4

Page table for

Program B

CSE378 Virtual memory.

Physical memory

10



From virtual address to memory location

(highly abstracted)
ALU
Virtual address
» Page
table
Memory
o hierarchy

A

Physica]' address

CSE378 Virtual memory.



Virtual address translation

Page size 1s always a power of 2

— Typical page sizes: 4 KB, 8§ KB
A virtual address consists of a virtual page number and an
offset within the page

— For example, with a 4KB page size the virtual address will have a
page number and an offset between 0 and 4K -1

— By analogy with a fully-associative cache, the offset 1s the
displacement field, the virtual page number 1s the tag.

— Thus for a 4KB page, offset will be 12 bits and virtual page
number 1s 20 bits

The physical address will have a frame number and the
same offset as the virtual address it 1s translated from

CSE378 Virtual memory.

12



Virtual address translation (ct’d)

Virtual page number Offset

Page table

>IWW—‘

Physical frame number Offset

CSE378 Virtual memory. 13



Paging system summary (so far)

Addresses generated by the CPU are virtual addresses

In order to access the memory hierarchy, these addresses
must be translated into physical addresses

That translation 1s done on a program per program basis.
Each program must have its own page table

The virtual address of program A and the same virtual
address in program B will, in general, map to two different
physical addresses

CSE378 Virtual memory. 14



Page faults

* When a virtual address has no corresponding physical
address mapping (valid bit is off in the PTE) we have a
page fault

* On a page fault (a page fault 1s an exception)

— the faulting page must be fetched from disk (takes milliseconds)

— the whole page (e.g., 4 or 8KB ) must be fetched (amortize the
cost of disk access)

— because the program is going to be idle during that page fetch, the
CPU better be used by another program. On a page fault, the
process state of the faulting program 1s saved and the O.S. takes
over. This is called context-switching

CSE378 Virtual memory. 15



Page size choices

« Small pages (e.g., 512 bytes in the VAX)

— Pros: takes less time to fetch from disk but as we’ll see fetching a
page of size 2x takes less than twice the time of fetching a page of
size x, better utilization of pages (less fragmentation)

— Con: page tables are large but one can use multilevel pages
« Large pages. Pros and cons converse from small pages

e Current trends
— Page size 4 KB or 8KB.

— Possibility of two pages sizes, one normal (4KB) and one very
large, e.g. 256KB for applications such as graphics.

CSE378 Virtual memory. 16



Top level questions relative to paging systems

When do we bring a page in main memory?
 Where do we put it?
 How do we know i1t’s there?

What happens 1f main memory 1s full

CSE378 Virtual memory. 17



Top level answers relative to paging systems

When do we bring a page in main memory?
— When there is a page fault for that page, 1.e., on demand

Where do we put 1t?

— No restriction; mapping is fully-associative

How do we know it’s there?
— The corresponding PTE entry has its valid bit on

What happens i1f main memory 1s full

— We have to replace one of the virtual pages currently mapped.
Replacement algorithms can be sophisticated (cf. CSE 451) since
we have a context-switch and hence plenty of time

CSE378 Virtual memory. 18



