
HW #4 Solutions

1 a) Direct-mapped cache with 16 one-word blocks

Word Address Hit/Miss Type
2 Miss Compulsory
3 Miss Compulsory
11 Miss Compulsory
16 Miss Compulsory
21 Miss Compulsory
13 Miss Compulsory
64 Miss Compulsory
48 Miss Compulsory
19 Miss Compulsory
11 Hit
3 Miss Conflict with 19
22 Miss Compulsory
4 Miss Compulsory
27 Miss Compulsory
6 Miss Compulsory
11 Miss Conflict with 27

Line Cache Word
0 16, 64

, 48
1
2 2
3 3, 19, 3
4 4
5 21
6 22, 6
7
8
9
10
11 11, 27, 11
12
13 13
14
15

b) 2-way Set Associative

Word Address Hit/Miss Type
2 Miss Compulsory
3 Miss Compulsory
11 Miss Compulsory
16 Miss Compulsory
21 Miss Compulsory
13 Miss Compulsory
64 Miss Compulsory
48 Miss Compulsory
19 Miss Compulsory
11 Hit
3 Miss Conflict with 19
22 Miss Compulsory
4 Miss Compulsory
27 Miss Compulsory
6 Miss Compulsory
11 Miss Conflict with 27

Line Cache Word
Set 0

Cache Word
Set 1

 0 16, 48 64
1
2 2
3 3, 19, 3, 11 11, 27
4 4
5 21 13
6 22 6
7

3. Yes, the shown form of decoding gives rise to problems. If the Index bits are in the
more significant locations than the Tag bits, while accessing data spatially close to each
other in memory, the Index bits might not change or show minimal change, causing data
to map to the same locations in the cache. This would lead to increased number of misses.

4. As discussed in class (will not be graded).

5. Using a 32-bit virtual address and 4 KB page size, the virtual address is partitioned into
a 20-bit virtual page number and a 12-bit page offset. We divide the virtual page number
into two 10-bit fields. The first field is the page table number and is used as an index into
the first-level page table. The size of the first-level page table in 210 entries×4 bytes/entry
= 212 bytes = one page.

2.1.

char* find_letter(char letter, int wordSize, int wordsSize, char** words)
{
 for(int i = 0; i < wordsSize; i++)
 {
 for(int j = 0; j < wordSize; j++)
 {
 if(words[i][j] == letter)
 {
 return words[i];
 }
 }
 }
 return 0; //Not found
}

2.2. It's slower because it's going column major instead of row major. This
causes there to be a greater number of cache misses as the list of strings
gets longer.

2.3. It takes better advantage of spacial locality by reading all of one
string before advancing to the next.

2.4. Consider two strings: 1 million 'a's and one 'b'. In this system. The
old function will find the 'b' first by checking the columns, whereas the
new will have to read all of the 'a's before finding the 'b'.

