A Real Problem

= What if you wanted to run a program that needs more memory than you
have?

Virtual Memory (and Indirection)

= Virtual Memory
— We’ll talk about the motivations for virtual memory
— We’ll talk about how it is implemented

— Lastly, we’ll talk about how to make virtual memory fast: Translation
Lookaside Buffers (TLBs).

A Real Problem

= What if you wanted to run a program that needs more memory than you
have?

— You could store the whole program on disk, and use memory as a
cache for the data on disk. This is one feature of virtual memory.

— Before virtual memory, programmers had to manually manage
loading “overlays” (chunks of instructions & data) off disk before
they were used. This is an incredibly tedious, not to mention error-
prone, process.

More Real Problems

Running multiple programs at the same time brings up more problems.

. Even if each program fits in memory, running 10 programs might not.

Multiple programs may want to store something at the same address.

. How do we protect one program’s data from being read or written by

another program?

More Real Problems

Running multiple programs at the same time brings up more problems.

. Even if each program fits in memory, running 10 programs might not.

— This is really the same problem as on the previous slide.

Multiple programs may want to store something at the same address.

— l.e., what if both Program A and B want to use address 0x10000000
as the base of their stack?

— It is impractical (if not impossible) to compile every pair of programs
that could get executed together to use distinct sets of addresses.

. How do we protect one program’s data from being read or written by

another program?

Virtual Memory

= We translate “virtual addresses” used by the program to “physical
addresses” that represent places in the machine’s “physical” memory.

— The word “translate” denotes a level of indirection

Virtual Address

Physical
Memory

>

). AR AL

s

Disk

A virtual address can be
mapped to either physical
memory or disk.

Virtual Memory

= Because different processes will have different mappings from virtual to

physical addresses, two programs can freely use the same virtual
address.

= By allocating distinct regions of physical memory to A and B, they are
prevented from reading/writing each others data.

Program A Physical

Program B

Memory
v <
= ™ fod I
= 9| &
= @
> A

Disk

Caching revisited

= Once the translation infrastructure is in place, the problem boils down to
caching.

— We want the size of disk, but the performance of memory.

= The design of virtual memory systems is really motivated by the high cost
of accessing disk.

— While memory latency is ~100 times that of cache, disk latency is
~100,000 times that of memory.

= Hence, we try to minimize the miss rate:
— VM “pages” are much larger than cache blocks. Why?
— A fully associative policy is used.
« With approximate LRU

= Should a write-through or write-back policy be used?

Finding the right page

= |f it is fully associative, how to we find the right page without scanning
all of memory?

Finding the right page

= If it is fully associative, how do we find the right page without scanning
all of memory?

— Use an index, just like you would for a book.

= Qur index happens to be called the page table:
— Each process has a separate page table
o A “page table register” points to the current process’s page table
— The page table is indexed with the virtual page number (VPN)
« The VPN is all of the bits that aren’t part of the page offset.
— Each entry contains a valid bit, and a physical page number (PPN)

e The PPN is concatenated with the page offset to get the physical
address

— No tag is needed because the index is the full VPN.

10

Page Table picture

Page table register

Virtual address

31 30 29 28 27 ceerererecenes 1514 13 12 1110 9 8 c o e 3210
Virtual page number Page offset
20 12
N D §
Valid Physical page number
(] ?
Page table
1
v \\8
If 0 then page is not
present in memory
29 28 27 ceeetnctnnannanns b 1514 13 12 11 1098--‘---3210

Physical page number

Page offset

Phvsical address

11

How big is the page table?

e
= From the previous slide:
— Virtual page number is 20 bits.
— Physical page number is 18 bits + valid bit -> round up to 32 bits.

= How about for a 64b architecture?

12

Dealing with large page tables

= Multi-level page tables
— “Any problem in CS can be solved by adding a level of indirection”

» or two...
Page Table 2nd
Base Pointer {st / 3rd
® A 3-level page table
e
PPN l
PPN offset
VPN1 | VPN2 | VPN3 | offset i

= Since most processes don’t use the whole address space, you don’t
allocate the tables that aren’t needed

— Also, the 2nd and 3rd level page tables can be “paged” to disk.

14

Waitaminute!

We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] + VPN3<<2] + offset]
— i.e., 4 memory accesses

And we haven’t talked about the bad case yet (i.e., page faults)...
“Any problem in CS can be solved by adding a level of indirection”
— except too many levels of indirection...

How do we deal with too many levels of indirection?

15

Caching Translations

Virtual to Physical translations are cached in a Translation Lookaside
Buffer (TLB).

313029 «evvvceeeenn. 5141312111098 --- - 3210

| Virtual page number | Page offset |
12

D N~

Valid Dirty Tag Physical page number
TLB Ok
(=) o=
TLB hit+«—fe ()]
(=)=t
(=) et
(=) e

!

Physical page number | Page offset

Physical address
Physical address tag | Cache index Byte
offset

|16 J4 +2
Valid Tag Data
Cache
p
J J32

Cache hit Data

What about a TLB miss?

If we miss in the TLB, we need to “walk the page table”

In MIPS, an exception is raised and software fills the TLB
In x86, a “hardware page table walker” fills the TLB

What if the page is not in memory?

This situation is called a page fault.
The operating system will have to request the page from disk.
It will need to select a page to replace.
e The O/S tries to approximate LRU (see C5423)
The replaced page will need to be written back if dirty.

17

Memory Protection

In order to prevent one process from reading/writing another process’s
memory, we must ensure that a process cannot change its virtual-to-
physical translations.

Typically, this is done by:
— Having two processor modes: user & kernel.
e Only the O/S runs in kernel mode
— Only allowing kernel mode to write to the virtual memory state, e.gq.,
e The page table
e The page table base pointer
« The TLB

18

Sharing Memory

Paged virtual memory enables sharing at the granularity of a page, by
allowing two page tables to point to the same physical addresses.

For example, if you run two copies of a program, the O/S will share the
code pages between the programs.

Program A Physical

Program B

Memory
a <
tfs - B
= 9| &
=)
> A

Disk

Summary

S
= Virtual memory is great:
— It means that we don’t have to manage our own memory.
— It allows different programs to use the same memory.
— It provides protect between different processes.

— It allows controlled sharing between processes (albeit somewhat
inflexibly).

= The key technique is indirection:
— Yet another classic CS trick you’ve seen in this class.
— Many problems can be solved with indirection.
= Caching made a few appearances, too:
— Virtual memory enables using physical memory as a cache for disk.

— We used caching (in the form of the Translation Lookaside Buffer) to
make Virtual Memory’s indirection fast.

20

