J

R

rﬁ»(é(z P

Lo, Tad Zesis

The final datapath

u

005 |

2% s:ds \l

Read Instruction
address [31-0]

Instruction
memory

/,\

-

[25-0)

RegWrite
I [25 - 21] Read Read
register 1 data 1 >
I [20 - 16] ALU
® Read > Zero
register 2 Read |—g@— 0 Result
i data 2 M
Write
register u
Registers X
115 -11] Write ] ALUOp
data
RegDst ALUSrc
1[15-0] Sign
extend

PCSrc

Ny

MemWrje
|

—p Read Read

address data

Write
address

p| Write Data

data memory

MemRead

ol wl

MemToR

o Xec=E -~

—



Control

The control unit is responsible for setting all the control sighals so that
each instruction is executed properly.

— The control unit’s input is the 32-bit instruction word.
— The outputs are values for the blue control signals in the datapath.

Most of the signals can be generated from the instruction opcode alone,
and not the entire 32-bit word.

To illustrate the relevant control signals, we will show the route that is
taken through the datapath by R-type, lw, sw and beq instructions.




R-type instruction path

= The R-type instructions include add, sub, and, or, and slt.
= The ALUOp is determined by the instruction’s “func” field.
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lw instruction path | e~ )
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= An example load instruction is (w(5t0} -4(Ssp).
= The ALUOp must be 010 (add), to compute the effective address.
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sw instruction path

= An example store instruction is sw $a0, 16(Ssp).
= The ALUOp must be 010 (add), again to compute the effective address.
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instruction path

OP[—OFZ = d) ’?

= One sample branch instruction is beq@, ©0, offset.

= The ALUOp is 110 (subtract), to test for equality.
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gontrol signal tablez

Operation | RegDst | RegWrite | ALUSrc A;U\Ogm&Write MemRead | MemToRe
add 7 | 1 1 0 |[010) 0 0 0
sub 1 1 0 110 | 0 0 0
and 1 1 0 000 0 0 0
or 1 1 0 | oo 0 0 0
slt 1 1 o | \uy/ 0 0 0
w 0 1 (™I 010 0 1 1
sw K | (o) | \u/ | o10 1 0 23
beq %/ | (o 0 110 0 0 \ X )

Vsw and beq are the only instructions that do not write any registers.

= |w and sw are the only instructions that use the constant field. They also
depend on the ALU to compute the effective memory address.

= ALUOp for R-type instructions depends on the instructions’ func field.

= The PCSrc control signal (not listed) should be set if the instruction is be
and the ALU’s Zero output is true.




Generating control signals

= The control unit needs 13 bits of inputs.
— Six bits make up the instruction’s o@e. 6
— Six bits come from the instruction’s func field. ¢
— It also needs the Zero output of the ALU. 1

= The control unit generates 10 bits of output, corresponding to the signals
mentioned on the previous page.

= You can build the actual circuit by using big K-maps, big Boolean algebra
or big circuit design programs.
18 circur programs.
» The textbook presents a slightly different control unit.
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Summary - Single Cycle Datapath

A datapath contains all the functional units and connections necessary to
implement an instruction set architecture.

— For our single-cycle implementation, we use two separate memories,
an ALU, some extra adders, and lots of multiplexers.

— MIPS is a 32-bit machine, so most of the buses are 32-bits wide.

The control unit tells the datapath what to do, based on the instruction
that’s currently being executed.

— QOur processor has ten control signals that regulate the datapath.

— The control signals can be generated by a combinational circuit with
the instruction’s 32-bit binary encoding as input.

——

Now we’ll see the performance limitations of this single-cycle machine
and try to improve upon it.
L

{




Multicycle datapath

= We just saw a single-cycle datapath and control unit for our simple MIPS-
based instruction set.

= A multicycle processor fixes some shortcomings in the single-cycle CPU.
— Faster instructions are not held back by slower ones.
— The clock cycle time can be decreased.
— We don’t have to duplicate any hardware units.

= A multicycle processor requires a somewhat simpler datapath which we’l
see today, but a more complex control unit that we’ll see later.




The single-cycle design again...
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The example add from last time

= Consider the instruction add Ss4, St1, St2.

000000 | 01001 01010 10100 | 00000 | 100000
op rs rt rd shamt func

=  Assume St1 and $t2 initially contairespectively.

» Executing this instruction involves several steps.

. The instruction word is read from the instruction memory, and the
program counter is incremented by 4.

2. The sources $t1 and $t2 are read from the register file.
. The values 1 and 2 are added by the ALU.
4. The result (3) is stored back into@ in the register file.

w



How the add goes through the datapath
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State elements

* In an instruction like add 5t1, 5t1, 5t2, how do we know
St1 is not updated until after its original value is read?
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The datapath and the clock

/=ZSTEP 1: A new instruction is loaded from memory. The control unit sets

the datapath signals appropriately so that

— registers are read,

— ALU output is generated, v

— data memory is read and v

— branch target addresses are computed._
Exa’STEP 2:

— The register file is updated for arithmetic or lw instructions.

— Data memory is written for a sw instruction.
—— — The PC is updated to point to the next instruction.

2

= In asingle-cycle datapath everything in Step 1 must complete within one
clock cycle.




The slowest instruction...

= |f all instructions must complete within one clock cycle, then the cycle
time has to be large enough to accommodate the slowest instruction.

= For example, (w 5t0, -4(Ssp) needq 8ns), assuming the delays shown here.
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...determines the clock cycle time

» |If we make the cycle time 8ns then every instruction will take 8ns, even
if they don’t need that much time.

= For example, the instruction add Ss4, St1, $t2 really needs just 6ns.
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How bad is this?

With these same component delays, a sw instruction would need 7ns, anc
beq would need just 5ns.

Let’s consider the gece instruction mix from Wﬁ% of the textbook.

Instruction | Frequency
Arithmetic 48% v«
Loads 22%
Stores 11% .
Branches 19% )

With a single-cycle datapath, each instruction would require 8ns.

But if we could execute instructions as fast as possible, the average time
per instruction for gcc would be: y =

/

(48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns% 7

———

The single-cycle datapath is about 1.26 times slower!



It gets worse...

= We’ve made very optimistic assumptions about memory latency:A

1o,

— Main memory accesses on modern machines is @ Toowe
us

e For comparison, an ALU on the Pentium4 takes ~0.3ns. 5C 1

= Qur worst case cycle (loads/stores) includes 2 memory accesses
— A modern single cycle implementation would be stuck at <10Mhz.
— Caches will improve common case access time, not worst case.

= Tying frequency to worst case path violates first law of performance!!




A multistage approach to instruction execution

= We’ve informally described instructions as executing in several steps.

Instruction fetch and PC increment. v
Reading sources from the register file. V
Performing an ALU computation. V
Reading or writing (data) memory. ./
Storing data back to the register file.\”

U AN W IN =

= What if we made these stages explicit in the hardware design?
S

\




Performance benefits

= Each instructionfcan execute only the stages that are necessary.
— Arithmetic 753

" — Load (7 3 ' —
— Store 1 Z 34
— Branches 123

= This would mean that instructions complete as soon as possible, instead
of being limited by the slowest instruction.

Proposed execution stages

Instruction fetch and PC increment
Reading sources from the register file
Performing an ALU computation
Reading or writing (data) memory
Storing data back to the register file




NTA

Or\u@ p
The ‘@3" clock ﬁD cycle

= Things are simpler if we assume that each “stage” takes one clock cycle.
— This means instructions will require multiple clock cycles to execute.
— But since a single stage is fairly simple, the cycle time can be low.

= For the proposed execution stages below and the sample datapath delays
shown earlier, each stage needs 2ns at most.

— This accounts for the slowest devices, the ALU and data memory.
— A 2ns clock cycle time corresponds to a 500MHz clock rate!

Proposed execution stages

Instruction fetch and PC increment
Reading sources from the register file
Performing an ALU computation
Reading or writing (data) memory
Storing data back to the register file

U N W IN =



Cost benefits

= As an added bonus, we can eliminate some of the extra hardware from
the single-cycle datapath.
— We will restrict ourselves to using each functional unit once per cycle

just like before.

— But since instructions require multiple cycles, we could reuse some
units in a different cycle during the execution of a single instruction.

= For example, we could use the same ALU:
— to increment the PC (first clock cycle), and
— for arithmetic operations (third clock cycle).

U N W IN =

Proposed execution stages

Instruction fetch and PC increment
Reading sources from the register file
Performing an ALU computation
Reading or writing (data) memory
Storing data back to the register file



Two extra adders

Our original single-cycle datapath had an ALU and two adders.
The arithmetic-logic unit had two responsibilities.
— Doing an operation on two registers for arithmetic instructions.

— Adding a register to a sign-extended constant, to compute effective
addresses for lw and sw instructions.

One of the extra adders incremented the PC by computing PC + 4.

The other adder computed branch targets, by adding a sign-extended,
shifted offset to (PC + 4).



The extra single-cycle adders
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Our new adder setup

We can eliminate both extra adders in a multicycle datapath, and insteas
use just one ALU, with multiplexers to select the proper inputs.

A 2-to-1 mux ALUSrcA sets the first ALU input to be the PC or a register.
A 4-to-1 mux ALUSrcB selects the second ALU input from among:
— the register file (for arithmetic operations),
— a constant 4 (to increment the PC),
— a sign-extended constant (for effective addresses), and
— a sign-extended and shifted constant (for branch targets).
This permits a single ALU to perform all of the necessary functions.
— Arithmetic operations on two register operands.
— Incrementing the PC.
— Computing effective addresses for lw and sw.
— Adding a sign-extended, shifted offset to (PC + 4) for branches.



The multicycle adder setup highlighted
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Eliminating a memory

Similarly, we can get by with one unified memory, which will store both
program instructions and data. (a Princeton architecture)

This memory is used in both the instruction fetch and data access stages,
and the address could come from either:

— the PC register (when we’re fetching an instruction), or

— the ALU output (for the effective address of a lw or sw).

We add another 2-to-1 mux, lorD, to decide whether the memory is bein
accessed for instructions or for data.

Proposed execution stages

Instruction fetch and PC increment
Reading sources from the register file
Performing an ALU computation
Reading or writing (data) memory
Storing data back to the register file
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PCWrite

The new memory setup highlighted
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Intermediate registers

= Sometimes we need the output of a functional unit in a later clock cycle
during the execution of one instruction.

— The instruction word fetched in stage 1 determines the destination of
the register write in stage 5.

— The ALU result for an address computation in stage 3 is needed as the
memory address for lw or sw in stage 4.

» These outputs will have to be stored in intermediate registers for future
use. Otherwise they would probably be lost by the next clock cycle.

— The instruction read in stage 1 is saved in Instruction register.
— Register file outputs from stage 2 are saved in registers A and B.
— The ALU output will be stored in a register ALUOuLt.

— Any data fetched from memory in stage 4 is kept in the Memory data
register, also called MDR.



The final multicycle datapath

PCWrite

v

PC ALUSrcA
lorD
| (0
RegDst RegWrite M
MemRead
0 u >
| X
M »| Read Read
u Address register 1 data 1 A =1 ALU
x > Zero
: ——»| Read ALU
- 1 Memory IRWrite - register 2 Read B Result out 9P
| - data 2 0
. [31-26] M e 4 1 PC
> Write  Mem (25-21] || u register 2 ALUOp
data Data [20-16] X Wit
| rite Registers 3
| [15-111 | 1 | P data
MemWrite [15-0]
Instruction - 0 ALUSrcB
register M
u Sign
Memory X extend
— data > 1
register
.

MemToReg



Register write control signals

We have to add a few more control signals to the datapath.

Since instructions now take a variable number of cycles to execute, we
cannot update the PC on each cycle.

— Instead, a PCWrite signal controls the loading of the PC.

— The instruction register also has a write signal, IRWrite. We need to

keep the instruction word for the duration of its execution, and must
explicitly re-load the instruction register when needed.

The other intermediate registers, MDR, A, B and ALUOut, will store data
for only one clock cycle at most, and do not need write control signals.
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Summary

= A single-cycle CPU has two main disadvantages.
— The cycle time is limited by the worst case latency.
— It requires more hardware than necessary.

» A multicycle processor splits instruction execution into several stages.
— Instructions only execute as many stages as required.
— Each stage is relatively simple, so the clock cycle time is reduced.
— Functional units can be reused on different cycles.

= We made several modifications to the single-cycle datapath.
— The two extra adders and one memory were removed.

— Multiplexers were inserted so the ALU and memory can be used for
different purposes in different execution stages.

— New registers are needed to store intermediate results.
= Next time, we’ll look at controlling this datapath.




