
1

1

Review
About how much of the AMD Opteron chip is L2 cache?
What is computer architecture the study of?
The MIPS (a) is a load/store architecture, (b) is a register-

register machine, (c) has an ISA, (d) all of the above
What does ISA stand for, and what is it?
In a machine instruction the registers are called (a)

operands, (b) noops, (c) opcodes
How many bits are needed to name a MIPS register?
What is the C equivalent to: sub $t0, $t1, $t2 ?

… and what does RAM stand for?

2

Memory

Memory sizes are specified much like register files; here
is a 2k x n RAM

A chip select input CS enables or ‘disables’ the RAM !
ADRS specifies the memory location to access
WR selects between reading from or writing to the

memory
 To read from memory, WR should be set to 0. OUT will be

the k-bit value stored at ADRS
 To write to memory, we set WR = 1. DATA is the k-bit value

to store in memory

2

3

MIPS Memory

MIPS memory is byte-addressable, which means that
each memory address references an 8-bit quantity. !

The MIPS architecture can support up to 32 address
lines.
 This results in a 232 x 8 RAM, which would be 4 GB of

memory.
 Not all MIPS machines will actually have that much!

4

Loading and Storing Bytes

The MIPS instruction set includes dedicated load and
store instructions for accessing memory

These differ from other instructions because they use
indexed addressing == a base + offset
 The address operand specifies a register (base) and a

signed constant (offset)
 These values are added to generate the effective address. !

The MIPS load byte instruction lb transfers one byte of
data from main memory to a register.
lb $t0, 20($a0) # $t0 = Memory[$a0 + 20] !

The store byte instruction sb transfers the lowest byte of
data from a register into main memory.
sb $t0, 20($a0) # Memory[$a0 + 20] = $t0

3

5

Loading and Storing Words

You can also load or store 32-bit quantities -- a complete
word instead of just a byte -- with the lw and sw
instructions.
 lw $t0, 20($a0) # $t0 = Memory[$a0 + 20]
 sw $t0, 20($a0) # Memory[$a0 + 20] = $t0 !

Most programming languages support several 32-bit data
types.
 Integers
 Single-precision floating-point numbers
 Memory addresses, or pointers !

Unless otherwise stated, we’ll assume words are the
basic unit of data

6

An Array of Words From Memory of Bytes

Use care with memory addresses when accessing words !
For instance, assume an array of words begins at

address 2000
 The first array element is at address 2000
 The second word is at address 2004, not 2001

Example, if $a0 contains 2000, then
lw $t0, 0($a0)

accesses the first word of the array, but
lw $t0, 8($a0)

would access the third word of the array, at address 2008

Memory is byte addressed but usually word referenced

4

7

Memory Alignment
Picture words of data stored in byte-addressable

memory as follows

The MIPS architecture requires words to be aligned in
memory; 32-bit words must start at an address that is
divisible by 4.
 0, 4, 8 and 12 are valid word addresses
 1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses
 Unaligned memory accesses result in a bus error, which you

may have unfortunately seen before !
This restriction has relatively little effect on high-level

languages and compilers, but it makes things easier
and faster for the processor

8

Computing on Data in Memory
So, to compute with memory-based data, you must:

1.  Load the data from memory to the register file
2.  Do the computation, leaving the result in a register
3.  Store that value back to memory if needed !

Let’s say you want to do some addition on values in memory:
char A[4] = {1, 2, 3, 4};
int result;

How can you do the following using MIPS assembly language?
result = A[0] + A[1] + A[2] + A[3];

A two part task:
  Define the data layout
  Define the computation

5

In MIPS Assembler …

9

#=======================================
Static data allocation and initialization
#=======================================

.data

A: .byte 1, 2, 3, 4 # Create space for A, and give
 # values in decimal: 1, 2, 3, 4
result: .word 9 # allocate 32 bits,
 # initialize to 9 for no good reason

In MIPS Assembler
#==================================
Program Text
#==================================
.text
main:
…
lb $t0, 0($a0) #Set up so A’s addr is in reg $a0, load A[0]
lb $t1, 1($a0) #Get second element A[1]
add $t0, $t1, $t0 #Add in second element
lb $t1, 2($a0) #Get third element A[2]
add $t0, $t1, $t0 #Add in third element
lb $t1, 3($a0) #Get fourth element A[3]
add $t0, $t1, $t0 #Add in fourth element
sw $t0, 0($a1) #Set up so result’s addr is in reg $a1, save

10

6

11

Pseudo Instructions
MIPS assemblers support pseudo-instructions giving

the illusion of a more expressive instruction set by
translating into 1 or more simpler, “real” instructions !

For example, li and move are pseudo-instructions:
 li $a0, 2000 # Load immediate 2000 into $a0
 move $a1, $t0 # Copy $t0 into $a1 !

They are probably clearer than their corresponding
MIPS instructions:
 addi $a0, $0, 2000 # Initialize $a0 to 2000
 add $a1, $t0, $0 # Copy $t0 into $a1 !

We’ll see more pseudo-instructions this semester.
 A complete list of instructions is given in Appendix A
 Unless otherwise stated, you can always use pseudo-

instructions in your assignments and on exams

12

Control Flow
•  Instructions usually execute one after another, but it’s often

necessary to alter the normal control flow

  Conditional statements execute only if some test is true

  Loops cause some statements to execute many times

// Find the absolute value of a0
v0 = a0;
if (v0 < 0)
 v0 = -v0; // This might not be executed
v1 = v0 + v0;

 // Sum the elements of a five-element array a0
v0 = 0;
t0 = 0;
while (t0 < 5) {
 v0 = v0 + a0[t0]; // These statements will
 t0++; // be executed five times
}

7

13

MIPS Control Instructions

•  MIPS’s control-flow instructions
j # for unconditional jumps
bne and beq # for conditional branches
slt and slti # set if less than (w/o and w/ immediate) !

•  As in
j line_label
bne $4, $7, line_label #skip to next part
slt $4, $7, $8 #test $7 less than $8

•  For example, compute |$8| … first test, then branch
 slt $9, $8, $0 #set $9 to 1 if $8 < 0
 beq $9, notNeg #branch if $9 not set
 sub $8, $0, $8 #flip sign

notNeg:

