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Review

•  If three instructions have opcodes 1, 7 and 
15 are they all of the same type?

•  If we were to add an instruction to MIPS of 
the form MOD $t1, $t2, $t3, which performs 
$t1 = $t2 MOD $t3, what would be its 
opcode?

• How can you tell if the immediate field is 
positive or negative?

• Could the distance J jumps be increased by 
using an opcode of fewer bits? 
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A single-cycle MIPS processor
An instruction set architecture is an interface that 

defines the hardware operations available to 
software

Any instruction set can be implemented in many 
different ways. Over the next few weeks we’ll see 
several possibilities
 In a basic single-cycle implementation all operations take 

the same amount of time—a single cycle
 A multicycle implementation allows faster operations to take 

less time than slower ones, so overall performance can be 
increased

 Finally, pipelining lets a processor overlap the execution of 
several instructions, potentially leading to big performance 
gains
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Single-cycle implementation
We describe the implementation of a simple MIPS-based 

instruction set supporting just the following operations

Today we’ll build a single-cycle implementation of this 
instruction set
 All instructions will execute in the same amount of time; this will 

determine the clock cycle time for our performance equations
 We’ll explain the datapath first, and then make the control unit

Arithmetic:   add sub and or slt
Data Transfer: lw sw
Control:   beq
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Computers are state machines

A computer is just a big fancy state machine.
 Registers, memory, hard disks and other storage 

form the state
 The processor keeps reading and updating the 

state, according to the instructions in some 
program

State 

CPU 
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John von Neumann
In ancient times, “programming” involved actually 

changing a machine’s physical configuration by 
flipping switches or connecting wires
 A computer could run just one program at a time
 Memory only stored data that was being operated on 

Then around 1944 Atanasoff, Eckert and Machley (and 
others) got the idea to encode instructions in a 
format that could be stored in memory just like data
 The processor interprets and executes instructions from 

memory
 One machine could perform many different tasks, just by 

loading different programs into memory
 John von Neumann wrote the first explanation of their idea, 

so the “stored program” design is often called a Von 
Neumann machine

6 

Memories

It’s easier to use a Harvard architecture 
at first, with programs and data stored 
in separate memories

To fetch instructions and read & write 
words, we need these memories to be 
32-bits wide (buses are represented 
by dark lines here).  We still want byte 
addressability, so these are 230 x 32 
memories
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More Memories

Blue lines represent control signals 
MemRead and MemWrite should be set 
to 1 if the data memory is to be read or 
written respectively, and 0 otherwise
 When a control signal does something when 

it is set to 1, we call it active high (vs. active 
low) because 1 is usually a higher voltage 
than 0

For now, we will assume you cannot write 
to the instruction memory
 Pretend it’s already loaded with a program, 

which doesn’t change while it’s running
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Instruction fetching

The CPU is always in an infinite 
loop, fetching instructions from 
memory and executing them

The program counter or PC register 
holds the address of the current 
instruction

MIPS instructions are each four 
bytes long, so the PC should be 
incremented by four to read the 
next instruction in sequence
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Start With R-type instructions
Last lecture, we saw encodings of MIPS instructions as 

32-bit values
Register-to-register arithmetic instructions use the R-

type format
— op is the instruction opcode, and func specifies a particular 

arithmetic operation
—  rs, rt and rd are source and destination registers

An example instruction and its encoding:

 add$s4, $t1, $t2

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

000000 01001 01010 10100 00000 1000000
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Registers and ALUs
R-type instructions must access registers 

and an ALU
The register file stores thirty-two 32-bit 

values
 Each register specifier is 5 bits long
 You can read from two registers at a time
— RegWrite is 1 if a register should be written
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Registers and ALUs
R-type instructions must access registers 

and an ALU
The register file stores thirty-two 32-bit 

values
 Each register specifier is 5 bits long
 You can read from two registers at a time
— RegWrite is 1 if a register should be written

Here’s a simple ALU with five operations, selected by 
a 3-bit control signal ALUOp
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Executing an R-type instruction
1.Read an instruction from the instruction memory
2.The source registers, specified by instruction fields rs 

and rt, should be read from the register file
3.The ALU performs the desired operation
4.Its result is stored in the destination register, which is 

specified by field rd of the instruction word
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op rs rt rd shamt func
31 26  25   2120    1615    1110      65 0
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Encoding I-type instructions

The lw, sw and beq instructions are all I-type encoding
—  rt is the destination for lw, but a source for beq and sw
— address is a 16-bit signed constant

Two example instructions:

 lw $t0, –4($sp)

 sw $a0, 16($sp)

op rs rt address
6 bits 5 bits 5 bits 16 bits

100011 11101 01000 1111 1111 1111 1100

101011 11101 00100 0000 0000 0001 0000
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Accessing data memory
For lw $t0, –4($sp), the base register $sp is added to a 

sign-extended constant to get a data memory address
 So the ALU must accept either a register operand for 

arithmetic instructions, or a sign-extended immediate operand 
for lw and sw.

 We’ll add a multiplexer, controlled by ALUSrc, to select either a 
register operand (0) or a constant operand (1)
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MemToReg
The register file’s “Write data” input has a similar 

problem. It must be able to store either the ALU 
output of R-type instructions, or the data memory 
output for lw

We add a mux, controlled by MemToReg, to select 
between saving the ALU result (0) or the data 
memory output (1) to the registers 
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RegDst
A final annoyance is the destination register of lw is in rt 

instead of rd

We add one more mux, controlled by RegDst, to select the 
destination register from either the rt (0) or rd (1)

op rs rt address

lw $rt, address($rs)
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For branch instructions, the constant is not an address 
but an instruction offset from the current program 
counter to the desired address.

   beq $at, $0, L 
   add $v1, $v0, $0 
   add $v1, $v1, $v1 
   j Somewhere 
  L: add $v1, $v0, $v0
The target address L is three instructions past the beq, 

so the encoding of the branch instruction has 0000 
0000 0000 0011 for the address field.

Instructions are four bytes long, so the actual memory 
offset is 12 bytes.

Branches

000100 00001 00000 0000 0000 0000 0011
op rs rt address
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The steps in executing a beq

1. Fetch the instruction, like beq $at, $0, offset, from 
memory

2. Read the source registers, $at and $0, from the 
register file

3. Compare the values by subtracting them in the ALU
4. If the subtraction result is 0, the source operands 

were equal and the PC should be loaded with the 
target address, PC + 4 + (offset x 4)

5. Otherwise the branch should not be taken, and the 
PC should just be incremented to PC + 4 to fetch 
the next instruction sequentially
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Branching hardware
We need a second adder, since the ALU is 

already doing subtraction for the beq. 

Multiply constant 
by 4 to get offset. 
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 PCSrc=0 continues 
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The final datapath
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