
1

Review

•  If three instructions have opcodes 1, 7 and
15 are they all of the same type?

•  If we were to add an instruction to MIPS of
the form MOD $t1, $t2, $t3, which performs
$t1 = $t2 MOD $t3, what would be its
opcode?

• How can you tell if the immediate field is
positive or negative?

• Could the distance J jumps be increased by
using an opcode of fewer bits?

1

2

A single-cycle MIPS processor
An instruction set architecture is an interface that

defines the hardware operations available to
software

Any instruction set can be implemented in many
different ways. Over the next few weeks we’ll see
several possibilities
 In a basic single-cycle implementation all operations take

the same amount of time—a single cycle
 A multicycle implementation allows faster operations to take

less time than slower ones, so overall performance can be
increased

 Finally, pipelining lets a processor overlap the execution of
several instructions, potentially leading to big performance
gains

2

3

Single-cycle implementation
We describe the implementation of a simple MIPS-based

instruction set supporting just the following operations

Today we’ll build a single-cycle implementation of this
instruction set
 All instructions will execute in the same amount of time; this will

determine the clock cycle time for our performance equations
 We’ll explain the datapath first, and then make the control unit

Arithmetic: add sub and or slt
Data Transfer: lw sw
Control: beq

4

Computers are state machines

A computer is just a big fancy state machine.
 Registers, memory, hard disks and other storage

form the state
 The processor keeps reading and updating the

state, according to the instructions in some
program

State

CPU

3

5

John von Neumann
In ancient times, “programming” involved actually

changing a machine’s physical configuration by
flipping switches or connecting wires
 A computer could run just one program at a time
 Memory only stored data that was being operated on

Then around 1944 Atanasoff, Eckert and Machley (and
others) got the idea to encode instructions in a
format that could be stored in memory just like data
 The processor interprets and executes instructions from

memory
 One machine could perform many different tasks, just by

loading different programs into memory
 John von Neumann wrote the first explanation of their idea,

so the “stored program” design is often called a Von
Neumann machine

6

Memories

It’s easier to use a Harvard architecture
at first, with programs and data stored
in separate memories

To fetch instructions and read & write
words, we need these memories to be
32-bits wide (buses are represented
by dark lines here). We still want byte
addressability, so these are 230 x 32
memories

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

4

7

More Memories

Blue lines represent control signals
MemRead and MemWrite should be set
to 1 if the data memory is to be read or
written respectively, and 0 otherwise
 When a control signal does something when

it is set to 1, we call it active high (vs. active
low) because 1 is usually a higher voltage
than 0

For now, we will assume you cannot write
to the instruction memory
 Pretend it’s already loaded with a program,

which doesn’t change while it’s running

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

8

Instruction fetching

The CPU is always in an infinite
loop, fetching instructions from
memory and executing them

The program counter or PC register
holds the address of the current
instruction

MIPS instructions are each four
bytes long, so the PC should be
incremented by four to read the
next instruction in sequence

Read
address

Instruction
memory

Instruction
[31-0]

PC

Add

4

5

9

Start With R-type instructions
Last lecture, we saw encodings of MIPS instructions as

32-bit values
Register-to-register arithmetic instructions use the R-

type format
— op is the instruction opcode, and func specifies a particular

arithmetic operation
—  rs, rt and rd are source and destination registers

An example instruction and its encoding:

 add$s4, $t1, $t2

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

000000 01001 01010 10100 00000 1000000

10

Registers and ALUs
R-type instructions must access registers

and an ALU
The register file stores thirty-two 32-bit

values
 Each register specifier is 5 bits long
 You can read from two registers at a time
— RegWrite is 1 if a register should be written

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

6

11

Registers and ALUs
R-type instructions must access registers

and an ALU
The register file stores thirty-two 32-bit

values
 Each register specifier is 5 bits long
 You can read from two registers at a time
— RegWrite is 1 if a register should be written

Here’s a simple ALU with five operations, selected by
a 3-bit control signal ALUOp

ALU

ALUOp

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

ALUOp Function
000 and
001 or
010 add
110 subtract
111 slt

12

Executing an R-type instruction
1.Read an instruction from the instruction memory
2.The source registers, specified by instruction fields rs

and rt, should be read from the register file
3.The ALU performs the desired operation
4.Its result is stored in the destination register, which is

specified by field rd of the instruction word

Read
address

Instruction
memory

Instruction
[31-0]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

I [25 - 21]

I [20 - 16]

I [15 - 11]

Result

Zero
ALU

ALUOp

op rs rt rd shamt func
31 26 25 2120 1615 1110 65 0

7

13

Encoding I-type instructions

The lw, sw and beq instructions are all I-type encoding
—  rt is the destination for lw, but a source for beq and sw
— address is a 16-bit signed constant

Two example instructions:

 lw $t0, –4($sp)

 sw $a0, 16($sp)

op rs rt address
6 bits 5 bits 5 bits 16 bits

100011 11101 01000 1111 1111 1111 1100

101011 11101 00100 0000 0000 0001 0000

14

Accessing data memory
For lw $t0, –4($sp), the base register $sp is added to a

sign-extended constant to get a data memory address
 So the ALU must accept either a register operand for

arithmetic instructions, or a sign-extended immediate operand
for lw and sw.

 We’ll add a multiplexer, controlled by ALUSrc, to select either a
register operand (0) or a constant operand (1)

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

8

15

MemToReg
The register file’s “Write data” input has a similar

problem. It must be able to store either the ALU
output of R-type instructions, or the data memory
output for lw

We add a mux, controlled by MemToReg, to select
between saving the ALU result (0) or the data
memory output (1) to the registers

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

16

RegDst
A final annoyance is the destination register of lw is in rt

instead of rd

We add one more mux, controlled by RegDst, to select the
destination register from either the rt (0) or rd (1)

op rs rt address

lw $rt, address($rs)

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

9

17

For branch instructions, the constant is not an address
but an instruction offset from the current program
counter to the desired address.

 beq $at, $0, L
 add $v1, $v0, $0
 add $v1, $v1, $v1
 j Somewhere
 L: add $v1, $v0, $v0
The target address L is three instructions past the beq,

so the encoding of the branch instruction has 0000
0000 0000 0011 for the address field.

Instructions are four bytes long, so the actual memory
offset is 12 bytes.

Branches

000100 00001 00000 0000 0000 0000 0011
op rs rt address

18

The steps in executing a beq

1. Fetch the instruction, like beq $at, $0, offset, from
memory

2. Read the source registers, $at and $0, from the
register file

3. Compare the values by subtracting them in the ALU
4. If the subtraction result is 0, the source operands

were equal and the PC should be loaded with the
target address, PC + 4 + (offset x 4)

5. Otherwise the branch should not be taken, and the
PC should just be incremented to PC + 4 to fetch
the next instruction sequentially

10

19

Branching hardware
We need a second adder, since the ALU is

already doing subtraction for the beq.

Multiply constant
by 4 to get offset.

 PCSrc=1 branches
 to PC+4+(offset×4).
 PCSrc=0 continues
 to PC+4. 4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

20

The final datapath

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

