
1

1

Review: What is it? What does it do?

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

2

slti $4, $5, 6

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

2

3

Control

The control unit is responsible for setting all the control
signals so that each instruction is executed properly
 The control unit’s input is the 32-bit instruction word
 The outputs are values for the blue control signals in the

datapath

Most of the signals can be generated from the
instruction opcode alone, and not the entire 32-bit
word

To illustrate the relevant control signals, we will show
the route that is taken through the datapath by R-
type, lw, sw and beq instructions

4

R-type instruction path
R-type instructions include add, sub, and, or, and slt
ALUOp is determined by the instruction’s “func” field

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

3

5

lw instruction path
An example load instruction is lw $t0, –4($sp)
ALUOp must be 010 (add) to compute the effective

address

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

6

sw instruction path
An example store instruction is sw $a0, 16($sp)
ALUOp must be 010 (add) again to compute the

effective address

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

4

7

beq instruction path
A sample branch instruction is beq $at, $0, offset.
The ALUOp is 110 (subtract) to test for equality

The branch may or
may not be taken,
depending on the
ALU’s Zero output

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

8

Control signal table

sw and beq are the only instructions that don’t write any registers
lw and sw are the only instructions that use the constant field.

They also depend on the ALU to compute the effective memory
address

ALUOp for R-type instructions depends on the instructions’ func
field

The PCSrc control signal (not listed) should be set if the instruction
is beq and the ALU’s Zero output is true

OperationRegDstRegWriteALUSrcALUOpMemWriteMemReadMemToReg
add 1 1 0 010 0 0 0
sub 1 1 0 110 0 0 0
and 1 1 0 000 0 0 0
or 1 1 0 001 0 0 0
slt 1 1 0 111 0 0 0
lw 0 1 1 010 0 1 1
sw X 0 1 010 1 0 X
beq X 0 0 110 0 0 X

5

9

Generating control signals
The control unit needs 13 bits of inputs

 Six bits make up the instruction’s opcode
 Six bits come from the instruction’s func field
 It also needs the Zero output of the ALU

The control unit generates 10 bits of output,
corresponding to the signals mentioned earlier

You can build the actual circuit by using big K-maps,
big Boolean algebra, or big circuit design programs

The textbook presents a slightly different control unit

Read
address

Instruction
memory

Instruction
[31-0]

 Control

I [31 - 26]

I [5 - 0]

RegWrite

ALUSrc

ALUOp

MemWrite

MemRead

MemToReg

RegDst

PCSrc

Zero

Logic Array

10

6

11

A Closer Look At the Operation

Consider the instruction add $t1, $t1, $t2

•  Assume $t1 and $t2 initially contain 1 and 2
respectively.

•  Executing this instruction involves several steps.
1.  The instruction word is read from the instruction memory,

and the program counter is incremented by 4
2.  The sources $t1 and $t2 are read from the register file
3.  The values 1 and 2 are added by the ALU
4.  The result (3) is stored back into $t1 in the register file

000000 01001 01010 01001 00000 1000000
opcode rs rt rd shamt func

12

The add moving through the datapath

10100

I [15 - 11]

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

4
Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21] 01001

I [20 - 16] 01010

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

00...01

00...10

00...11

PC+4

7

13

State Elements

•  In an instruction like add $t1, $t1, $t2, how do
we know $t1 is not updated until after its
original value is read?

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

PC

01001

01001

14

The datapath and the clock
•  STEP 1: A new instruction is loaded from memory.

The control unit sets the datapath signals
appropriately so that
 registers are read,
 ALU output is generated,
 data memory is read and
 branch target addresses are computed

•  STEP 2:
 The register file is updated for arithmetic or lw instructions
 Data memory is written for a sw instruction
 The PC is updated to point to the next instruction

•  In a single-cycle datapath everything in Step 1 must
complete within one clock cycle.

8

15

The lw moves through the datapath

16

The beq moves through the datapath

9

17

Next Steps

•  Designing a computer is only the first step
 Next, we must consider how fast it runs,
 And how to make it run faster

•  We have a “single cycle” design that
assumes all operations complete within
one clock cycle

18

The slowest instruction...
•  If all instructions must complete within 1 clock cycle,

then the cycle time >= slowest instruction
•  For example, lw $t0, –4($sp) needs 8ns, assuming the

delays shown here

0
M
u
x
1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1
M
u
x
0

Sign
extend

0
M
u
x
1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers 2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

8ns

reading the instruction memory 2ns
reading the base register $sp 1ns
computing memory address $sp-4 2ns
reading the data memory 2ns
storing data back to $t0 1ns

10

19

...determines the clock cycle time
•  If we make the cycle time 8ns every instruction will

take 8ns, even if they don’t need that much time
•  For example, the instruction add $s4, $t1, $t2 really

needs just 6ns

0
M
u
x
1

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

1
M
u
x
0

Sign
extend

0
M
u
x
1

Result

Zero
ALU

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers 2 ns

2 ns

2 ns

1 ns 0 ns

0 ns

0 ns

0 ns

6ns

reading the instruction memory 2ns
reading registers $t1 and $t2 1ns
computing $t1 + $t2 2ns
storing the result into $s0 1ns

20

Summary
A datapath contains all the functional units and

connections necessary to implement an instruction
set architecture
 For our single-cycle implementation, we use two separate

memories, an ALU, some extra adders, and lots of
multiplexers

 MIPS is a 32-bit machine, so most of the buses are 32-bits
wide

The control unit tells the datapath what to do, based on
the instruction that’s currently being executed
 Our processor has ten control signals that regulate the

datapath
 The control signals can be generated by a combinational

circuit with the instruction’s 32-bit binary encoding as input

Next, we’ll see the performance limitations of this
single-cycle machine and try to improve upon it

