
1 

Review Multicycle: What is Happening

1 

Result 

Zero 
ALU 

ALUOp 

0 
M 
u 
x 
1 

ALUSrcA 

0

1

2

3
ALUSrcB 

Read 
register 1 

Read 
register 2 

Write 
register 

Write 
data 

Read 
data 2 

Read 
data 1 

Registers 

RegWrite 

Address 

Memory 

Mem 
Data 

Write 
data 

Sign 
extend 

Shift 
left 2 

0 
M 
u 
x 
1 

PCSource 

PC 

A 

B 
ALU 
Out 

4 [31-26] 
[25-21] 
[20-16] 
[15-11] 
[15-0] 

Instruction 
register 

Memory 
data 

register 

  IRWrite 
0 
M 
u 
x 
1 

  RegDst 

0 
M 
u 
x 
1 

  MemToReg 

0 
M 
u 
x 
1 

IorD 

MemRead 

MemWrite 

PCWrite 

Controlling The Multicycle Design

2 

Result 
Zero 

ALU 

ALUOp 

0 
M 
u 
x 
1 

ALUSrcA 

0
1
2
3

ALUSrcB 

Read 
register 1 
Read 
register 2 
Write 
register 
Write 
data 

Read 
data 2 

Read 
data 1 

Registers 

RegWrite 

Address 

Memory 

Mem 
Data 

Write 
data 

Sign 
extend 

Shift 
left 2 

0 
M 
u 
x 
1 

PCSource 

PC 

A 

B 
ALU 
Out 

4 [31-26] 
[25-21] 
[20-16] 
[15-11] 
[15-0] 

Instruction 
register 

Memory 
data 

register 

  IRWrite 
0 
M 
u 
x 
1 

  RegDst 

0 
M 
u 
x 
1 

  MemToReg 

0 
M 
u 
x 
1 

IorD 

MemRead 

MemWrite 

PCWrite 



2 

3 

Stage 1: Instruction fetch & PC increment

Result 

Zero 
ALU 

ALUOp 

0 
M 
u 
x 
1 

ALUSrcA 

0 
1 
2 
3 

ALUSrcB 

Read 
register 1 

Read 
register 2 

Write 
register 

Write 
data 

Read 
data 2 

Read 
data 1 

Registers 

RegWrite 

Address 

Memory 

Mem 
Data 

Write 
data 

Sign 
extend 

Shift 
left 2 

0 
M 
u 
x 
1 

PCSource 

PC 

A 

B 
ALU 
Out 

4 [31-26] 
[25-21] 
[20-16] 
[15-11] 
[15-0] 

Instruction 
register 

Memory 
data 

register 

  IRWrite 
0 
M 
u 
x 
1 

  RegDst 

0 
M 
u 
x 
1 

  MemToReg 

0 
M 
u 
x 
1 

IorD 

MemRead 

MemWrite 

PCWrite 

PC = PC + 4 

IR = Mem[PC] 

Controls: PCWrite, IorD, MemRead, IRWrite, ALUSrcA==0, 
ALUSrcB==1, ALUOp==add, PCSource==0 

4 

Register File Read
 Devoting whole cycle only to read regs is a waste

Result 

Zero 
ALU 

ALUOp 

0 
M 
u 
x 
1 

ALUSrcA 

0

1

2

3
ALUSrcB 

Read 
register 1 

Read 
register 2 

Write 
register 

Write 
data 

Read 
data 2 

Read 
data 1 

Registers 

RegWrite 

Address 

Memory 

Mem 
Data 

Write 
data 

Sign 
extend 

Shift 
left 2 

0 
M 
u 
x 
1 

PCSource 

PC 

A 

B 
ALU 
Out 

4 [31-26] 
[25-21] 
[20-16] 
[15-11] 
[15-0] 

Instruction 
register 

Memory 
data 

register 

  IRWrite 
0 
M 
u 
x 
1 

  RegDst 

0 
M 
u 
x 
1 

  MemToReg 

0 
M 
u 
x 
1 

IorD 

MemRead 

MemWrite 

PCWrite 



3 

5 

Stage 2: Reg fetch & branch target

Result 

Zero 
ALU 

ALUOp 

0 
M 
u 
x 
1 

ALUSrcA 

0 
1 
2 
3 

ALUSrcB 

Read 
register 1 

Read 
register 2 

Write 
register 

Write 
data 

Read 
data 2 

Read 
data 1 

Registers 

RegWrite 

Address 

Memory 

Mem 
Data 

Write 
data 

Sign 
extend 

Shift 
left 2 

0 
M 
u 
x 
1 

PCSource 

PC 

A 

B 
ALU 
Out 

4 [31-26] 
[25-21] 
[20-16] 
[15-11] 
[15-0] 

Instruction 
register 

Memory 
data 

register 

  IRWrite 
0 
M 
u 
x 
1 

  RegDst 

0 
M 
u 
x 
1 

  MemToReg 

0 
M 
u 
x 
1 

IorD 

MemRead 

MemWrite 

PCWrite 

Compute branch 
target address 

Read source 
registers 

Controls: ALUSrcA==0, ALUSrcB==3, ALUOp==add 

6 

Stage 3 (beq): Branch completion

Result 

Zero 
ALU 

ALUOp 

0 
M 
u 
x 
1 

ALUSrcA 

0 
1 
2 
3 

ALUSrcB 

Read 
register 1 

Read 
register 2 

Write 
register 

Write 
data 

Read 
data 2 

Read 
data 1 

Registers 

RegWrite 

Address 

Memory 

Mem 
Data 

Write 
data 

Sign 
extend 

Shift 
left 2 

0 
M 
u 
x 
1 

PCSource 

PC 

A 

B 
ALU 
Out 

4 [31-26] 
[25-21] 
[20-16] 
[15-11] 
[15-0] 

Instruction 
register 

Memory 
data 

register 

  IRWrite 
0 
M 
u 
x 
1 

  RegDst 

0 
M 
u 
x 
1 

  MemToReg 

0 
M 
u 
x 
1 

IorD 

MemRead 

MemWrite 

PCWrite 

Check for equality 
of register contents 

Use the target address 
computed in stage 2 

Controls: ALUSrcA==1, ALUSrcB==0, ALUOp==sub, 
PCSource==1, PCWrite==1 



4 

7 

Finite-state machine for the control unit

IorD = 0 
MemRead = 1 
IRWrite = 1 
ALUSrcA = 0 
ALUSrcB = 01 
ALUOp = 010 
PCSource = 0 
PCWrite = 1 

ALUSrcA = 0 
ALUSrcB = 11 
ALUOp = 010 

Instruction fetch 
and PC increment Register fetch and 

branch computation 

Effective address 
computation 

Memory 
read 

Register 
 write 

Op = LW/SW 

Op = SW 

Op = LW 

MemWrite = 1 
IorD = 1 

ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 010 

MemRead = 1 
IorD = 1 

RegWrite = 1 
RegDst = 0 

MemToReg = 1 

Memory 
write 

R-type 
  execution 

Op = R-type ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = func 

RegWrite = 1 
RegDst = 1 

MemToReg = 0 

R-type 
  writeback 

Branch 
  completion Op = BEQ 

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 110 

PCWrite = Zero 
PCSource = 1 

All instruction are the same for stages 1 and 2 

8 

Comparing instruction execution times
In the single-cycle datapath, each instruction needs an 

entire clock cycle, or 8ns, to execute
With the multicycle CPU, different instructions need 

different numbers of clock cycles
 A branch needs 3 cycles, or 3 x 2ns = 6ns
 Arithmetic and sw instructions each require 4 cycles, or 8ns
 Finally, a lw takes 5 cycles, or 10ns

We can make some observations about performance 
already
 Loads take longer with this multicycle implementation, while 

all other instructions are faster than before.
 So if our program doesn’t have too many loads, then we 

should see an increase in performance.



5 

9 

The gcc example
Let’s assume the gcc instruction mix

In a single-cycle datapath, all instructions take 8ns
The average execution time for an instruction on the 

multicycle processor works out to 8.06ns:

(48% x 8ns) + (22% x 10ns) + (11% x 8ns) + (19% x 6ns) 
= 3.84 + 2.2 + .88 + 1.14 = 8.06ns

The multicycle implementation is actually slightly slower

Instruction Frequency
Arithmetic 48%

Loads 22%
Stores 11%

Branches 19%

10 

Reconsider Memory’s Role

Memory is 50ns, implying single-cycle = 104ns implying a 
9.6MHz clock rate 

For multi-cycle w/cache, let the processor stall on a 
cache miss
  Keep 2ns cycle time or 500MHz clock rate
  Instruction execution for GCC 8.06 ns

Consider executing 109 instructions w/ 106  memory 
references: 50ns * 106 = 5*107 ns 

 single-cycle = 104 seconds for total of 104.05 sec
 multi-cycle = memory time + instruction execution 

time = 0.05 + 8.06 seconds for total of 8.11 sec



6 

11 

Return:Finite-state machine for control

IorD = 0 
MemRead = 1 
IRWrite = 1 
ALUSrcA = 0 
ALUSrcB = 01 
ALUOp = 010 
PCSource = 0 
PCWrite = 1 

ALUSrcA = 0 
ALUSrcB = 11 
ALUOp = 010 

Instruction fetch 
and PC increment Register fetch and 

branch computation 

Effective address 
computation 

Memory 
read 

Register 
 write 

Op = LW/SW 

Op = SW 

Op = LW 

MemWrite = 1 
IorD = 1 

ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 010 

MemRead = 1 
IorD = 1 

RegWrite = 1 
RegDst = 0 

MemToReg = 1 

Memory 
write 

R-type 
  execution 

Op = R-type ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = func 

RegWrite = 1 
RegDst = 1 

MemToReg = 0 

R-type 
  writeback 

Branch 
  completion Op = BEQ 

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 110 

PCWrite = Zero 
PCSource = 1 

12 

Recall: Implementing the FSM

FSM can be translated into a state table; first 2 states:

You can implement this the hard way – you don’t want to do this
 Represent the current state using flip-flops or a register.
 Find equations for the next state and (control signal) outputs in 

terms of the current state and input (instruction word).
Or you can use the easy way.

 Stick the whole state table into a memory, like a ROM
 This would be much easier, since you don’t have to derive 

equations

Current 
State

Input 
(Op)

Next 
State

Output (Control signals)

PC 
Write

IorD
MemR

ead
Mem 
Write

IR 
Write

Reg 
Dst

MemTo
Reg

Reg 
Write

ALU 
SrcA

ALU 
SrcB

ALU 
Op

PC 
Source

Instr 
Fetch

X
Reg 
Fetch

1 0 1 0 1 X X 0 0 01 010 0

Reg 
Fetch

BEQ
Branch 
compl

0 X 0 0 0 X X 0 0 11 010 X

Reg 
Fetch

R-type
R-type 
execute

0 X 0 0 0 X X 0 0 11 010 X

Reg 
Fetch

LW/SW
Compute 
eff addr

0 X 0 0 0 X X 0 0 11 010 X



7 

13 

Motivation for microprogramming
Think of the control unit’s state diagram as a program

 Each state represents a “command,” or a set of control signals 
that tells the datapath what to do

 Several commands are executed sequentially
 “Branches” may be taken depending on the instruction 

opcode
 The state machine “loops” by returning to the initial state

We could invent a special language for the control unit
 We could devise a more readable, higher-level notation rather 

than dealing directly with binary control signals and state 
transitions

 We would design control units by writing “programs” in this 
language

 We would depend on a hardware or software translator to 
convert our programs into a circuit for the control unit

14 

A good notation is very useful

Instead of specifying the exact binary values for each 
control signal, we will define a symbolic notation 
that’s easier to work with

As a simple example, we might replace ALUSrcB = 01 
with ALUSrcB = 4, meaning the constant 4

We can also create symbols that combine several 
control signals together. Instead of

IorD = 0
MemRead = 1

IRWrite = 1

 it would be nicer to just say something like

Read PC



8 

15 

Microinstructions

For the MIPS multicycle we could define 
microinstructions with eight fields.
 These fields will be filled in symbolically, instead of in binary
 They determine all the control signals for the datapath. 

There are only 8 fields because some of them specify more 
than one of the 12 actual control signals

 A microinstruction corresponds to one execution stage, or 
one cycle

You can see that in each microinstruction, we can do 
something with the ALU, register file, memory, and 
program counter units

Label
ALU 

control
Src1 Src2

Register 
control

Memory
PCWrite 
control

Next

16 

Specifying ALU operations

ALU control selects the ALU operation
— Add indicates addition for memory offsets or PC increments
— Sub performs source register comparisons for “beq”
— Func denotes the execution of R-type instructions

SRC1 is either PC or A, for the ALU’s first operand
SRC2, the second ALU operand, can be one of four 

different values
— B for R-type instructions and branch comparisons
— The constant 4 to increment the PC
— Extend, the sign-extended constant field for mem refs
— Extshift, sign-extended, shifted constant for branch targets

These correspond to the ALUOp, ALUSrcA and ALUSrcB control 
signals, except we use names like “Add” and not actual bits like 
“010.”

Label
ALU 

control
Src1 Src2

Register 
control

Memory
PCWrite 
control

Next



9 

17 

Specifying register and memory actions

Register control selects a register file action
— Read to read from registers “rs” and “rt” of the instruction 

word
— Write ALU writes ALUOut into destination register “rd”
— Write MDR saves MDR into destination register “rt”

Memory chooses the memory unit’s action
— Read PC reads an instruction from address PC into IR
— Read ALU reads data from address ALUOut into MDR
— Write ALU writes register B to address memory ALUOut

Label
ALU 

control
Src1 Src2

Register 
control

Memory
PCWrite 
control

Next

18 

Specifying PC actions

PCWrite control determines what happens to the PC.
— ALU sets PC to ALUOut, used in incrementing the PC.
— ALU-Zero writes ALUOut to PC only if the ALU’s Zero 

condition is true.  This is used to complete a branch 
instruction.

Next determines the next microinstruction to be 
executed.
— Seq causes the next microinstruction to be executed.
— Fetch returns to the initial instruction fetch stage.
— Dispatch i is similar to a “switch” or “case” statement; it 

branches depending on the actual instruction word.

Label
ALU 

control
Src1 Src2

Register 
control

Memory
PCWrite 
control

Next



10 

19 

Microprogramming the first stage
Below are two lines of microcode to implement 

the first two multicycle execution stages, 
instruction fetch and register fetch

The first line, labeled Fetch, involves several 
actions
— Read from memory address PC
— Use ALU to compute PC + 4, and return it to the PC

— Continue on to the next sequential microinstruction

Label ALU 
control

Src1 Src2 Register 
control

Memory PCWrite 
control

Next

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshift Read Dispatch 1

20 

The second stage

The second line implements register fetch stage
— Read registers rs and rt from the register file

— Pre-compute PC + (sign-extend(IR[15-0]) << 2) for 
branches

— Determine the next microinstruction based on the 
opcode of the current MIPS program instruction

Label ALU 
control

Src1 Src2 Register 
control

Memory PCWrite 
control

Next

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshift Read Dispatch 1

switch (opcode) { 
 case 4: goto BEQ1; 
 case 0: goto Rtype1; 
 case 43: 
 case 35: goto Mem1; 
} 



11 

21 

Completing a beq instruction

Control would transfer to this microinstruction if the 
opcode was “beq”
— Compute A-B, to set the ALU’s Zero bit if A=B
— Update PC with ALUOut (which contains the branch target 

from the previous cycle) if Zero is set
— The beq is completed, so fetch the next instruction

The 1 in the label BEQ1 reminds us that we came here 
via the first branch point (“dispatch table 1”), from 
the second execution stage

Label ALU 
control

Src1 Src2 Register 
control

Memory PCWrite 
control

Next

BEQ1 Sub A B ALU-Zero Fetch

22 

Completing an arithmetic instruction

When the opcode indicates an R-type instruction…
 The first cycle performs an operation on registers A and B, 

based on the MIPS instruction’s func field
 The next stage writes the ALU output to register “rd” from 

the MIPS instruction word

We can then go back to the Fetch microinstruction, to 
fetch and execute the next MIPS instruction

Label ALU 
control

Src1 Src2 Register 
control

Memory PCWrite 
control

Next

Rtype1 func A B Seq
Write ALU Fetch



12 

23 

Completing data transfer instructions

For both sw, lw instructions, we should first compute the 
effective memory address, A + sign-extend(IR[15-0])

Another dispatch or branch distinguishes between stores 
and loads
 For sw, we store data (from B) to the effective memory address
 For lw we copy data from the effective memory address to 

register rt

In either case, we continue on to Fetch when done

Label ALU 
control

Src1 Src2 Register 
control

Memory PCWrite 
control

Next

Mem1 Add A Extend Dispatch 2
SW2 Write ALU Fetch

LW2 Read ALU Seq

Write MDR Fetch

24 

Microprogramming vs. programming

Microinstructions correspond to control signals
 They describe what is done in a single clock cycle
 These are the most basic operations available in a 

processor

Microprograms implement higher-level MIPS 
instructions
 MIPS assembly language instructions are comparatively 

complex, each possibly requiring multiple clock cycles to 
execute

 But each complex MIPS instruction can be implemented 
with several simpler microinstructions



13 

25 

Similarities with assembly language
Microcode is intended to make control unit design easier

 We defined symbols like Read PC to replace binary control 
signals

 A translator converts microinstructions into a real control unit
 The translation is straightforward, because each 

microinstruction corresponds to one set of control values

This sounds similar to MIPS assembly language!
 We use mnemonics like lw instead of binary opcodes like 

100011
 MIPS programs must be assembled to produce real machine 

code
 Each MIPS instruction corresponds to a 32-bit instruction 

word

26 

Managing complexity

It looks like all we’ve done is devise a new notation that 
makes it easier to specify control signals

And that’s exactly right! The issue is managing 
complexity
 Control units are probably the most challenging part of CPU 

design
 Large instruction sets require large state machines with 

many states, branches and outputs
 Control units for multicycle processors are difficult to create 

and maintain

Applying programming ideas to hardware design is a 
useful technique



14 

27 

Cases when microprogramming is bad

One disadvantage of microprograms is that looking up 
control signals in a ROM can be slower than 
generating them from simplified circuits

Sometimes complex instructions implemented in 
hardware are slower than equivalent assembly 
programs written using simpler instructions
 Complex instructions are usually very general, so they can 

be used more often. But this also means they can’t be 
optimized for specific operands or situations

 Some microprograms just aren’t written very efficiently. But 
since they’re built into the CPU, people are stuck with them 
(at least until the next processor upgrade)

28 

How microcode is used today

Modern CISC processors (like x86) use a combination of 
hardwired logic and microcode to balance design effort 
with performance
 Control for many simple instructions can be implemented in 

hardwired which can be faster than reading a microcode ROM
 Less-used or very complex instructions are microprogrammed 

to make the design easier and more flexible (floats, divide)

In this way, designers respect the “first law of 
performance”
 Make the common case fast!


