
1

Announcements

• Reading … 5.1, 5.2
• HW 2 due today
• No Class Wednesday

1

2

Recall the pipeline diagram

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Clock cycle
 1 2 3 4 5 6 7 8 9

2

3

Where to find the ALU result
The ALU result generated in the EX stage is normally

passed through the pipeline registers to the MEM
and WB stages, before being written to register file

This is an abridged diagram of our pipelined datapath.

Instruction
memory Data

memory

1

0

PC

ALU Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

4

Outline of forwarding hardware
A forwarding unit selects the correct ALU inputs for the

EX stage
 If there is no hazard, the ALU’s operands will come from the

register file, just like before.
 If there is a hazard, the operands will come from either the

EX/MEM or MEM/WB pipeline registers instead.

The ALU sources will be selected by 2 new muxes, with
control signals named ForwardA and ForwardB

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

3

5

Simplified datapath w/ forwarding muxes

ForwardA Instruction
memory

Data
memory

1

0

PC

ALU Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

0
1
2

0
1
2

ForwardB

6

Detecting EX/MEM data hazards
So how can the hardware determine if a hazard exists?
An EX/MEM hazard occurs between the instruction

currently in its EX stage and the previous instruction if
1.  The previous instruction will write to the register file, and
2.  The destination is an the ALU source register in the EX stage

An EX/MEM hazard exists between 2 instructions below
Data in a pipeline register can be referenced using a

class-like syntax. For example, ID/EX.RegisterRt
refers to the rt field stored in the ID/EX pipeline

 DM Reg Reg IM

 DM Reg Reg IM

sub $2, $1, $3

and $12, $2, $5

4

7

EX/MEM data hazard equations

The first ALU source comes from the pipeline register when necessary

if (EX/MEM.RegWrite == 1 && EX/MEM.RegisterRd == ID/EX.RegisterRs)

 then ForwardA = 2

The second ALU source is similar.
if (EX/MEM.RegWrite == 1 && EX/MEM.RegisterRd = ID/EX.RegisterRt)

 then ForwardB = 2

 DM Reg Reg IM

 DM Reg Reg IM

sub $2, $1, $3

and $12, $2, $5

8

Detecting MEM/WB data hazards
A MEM/WB hazard may occur between an instruction in

the EX stage and one from two cycles ago
One new problem is if a register is updated twice in a row

 add $1, $2, $3
 add $1, $1, $4
 sub $5, $5, $1

Register $1 is written by both preceding instructions; only
the most recent (from the 2nd ADD) is to be forwarded

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

add $1, $2, $3

add $1, $1, $4

sub $5, $5, $1

5

9

MEM/WB hazard equations
Here is an equation for detecting and handling MEM/

WB hazards for the first ALU source.

 if (MEM/WB.RegWrite == 1
 && MEM/WB.RegisterRd == ID/EX.RegisterRs
 && (EX/MEM.RegisterRd != ID/EX.RegisterRs ||
 EX/MEM.RegWrite == 0)
 then ForwardA = 1

The second ALU operand is handled similarly

 if (MEM/WB.RegWrite == 1
 && MEM/WB.RegisterRd == ID/EX.RegisterRt
 && (EX/MEM.RegisterRd != ID/EX.RegisterRt ||
 EX/MEM.RegWrite = 0)
 then ForwardB = 1

10

Simplified datapath with forwarding

ForwardA
Instruction

memory

Data
memory

1

0

PC

ALU Registers

Rd

Rt 0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

ForwardB

ID/EX.
RegisterRt

ID/EX.
RegisterRs

6

11

The forwarding unit
The forwarding unit has several control signals as

inputs

 ID/EX.RegisterRs EX/MEM.RegisterRdMEM/
WB.RegisterRd

 ID/EX.RegisterRt EX/MEM.RegWrite MEM/
WB.RegWrite

 (The two RegWrite signals are not shown in the
diagram, but they come from the control unit.)

The fowarding unit outputs are selectors for the
ForwardA and ForwardB multiplexers attached to the
ALU. These outputs are generated from the inputs
using the equations on the previous pages

Some new buses route data from pipeline registers to
the new muxes

12

Example

 sub $2, $1, $3
 and $12, $2, $5
 or $13, $6, $2
 add $14, $2, $2
 sw $15, 100($2)

Assume again each register initially contains its number
plus 100
 After the first instruction, $2 should contain -2 (101 - 103)
 The other instructions should all use -2 as one of their

operands

We’ll try to keep the example short
 Assume no forwarding is needed except for register $2
 We’ll skip the first two cycles, since they’re the same as

before

7

13

MEM/WB.RegisterRd ID/EX.
RegisterRs

Clock cycle 3

Instruction
memory

Data
memory

1

0

PC

ALU Registers

12 (Rd)

5 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

2 (Rs)

0
1
2

0
1
2

Forwarding
Unit

1

EX: sub $2, $1, $3 ID: and $12, $2, $5 IF: or $13, $6, $2

102

105

X

X

2

5

101

103

101

-2

103

0

0

3

2 2

ID/EX.
RegisterRt

EX/MEM.RegisterRd

14

-2

ID/EX.
RegisterRs

5

MEM/WB.RegisterRd

EX/MEM.RegisterRd

Clock 4: forwarding $2 from EX/MEM

Instruction
memory

Data
memory

1

0

PC

ALU Registers

13 (Rd)

2 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

6 (Rs)

0
1
2

0
1
2

Forwarding
Unit

2

EX: and $12, $2, $5 ID: or $13, $6, $2 IF: add $14, $2, $2

106

102

X

X

6

2

102

105

-2

104

105

0

 2

12 12

MEM: sub $2, $1, $3

-2

2

ID/EX.
RegisterRt

8

15

-2

ID/EX.
RegisterRs

2 EX/MEM.RegisterRd

Clock 5: forwarding $2 from MEM/WB

Instruction
memory

Data
memory

1

0

PC

ALU Registers

14 (Rd)

2 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

2 (Rs)

0
1
2

0
1
2

Forwarding
Unit

12

6

EX: or $13, $6, $2 ID: add $14, $2, $2 IF: sw $15, 100($2)

-2

-2

-2

2

2

2

106
106

-2

102

1

0

13 13

MEM: and $12, $2, $5

104

104

WB: sub
$2, $1, $3

X

-2

-2

 -2

2

2

ID/EX.
RegisterRt

MEM/WB.RegisterRd

16

Lots of data hazards

The first data hazard occurs during cycle 4.
 The forwarding unit notices that the ALU’s first source

register for the AND is also the destination of the SUB
instruction.

 The correct value is forwarded from the EX/MEM register,
overriding the incorrect old value still in the register file.

A second hazard occurs during clock cycle 5.
 The ALU’s second source (for OR) is the SUB destination

again.
 This time, the value has to be forwarded from the MEM/WB

pipeline register instead.

There are no other hazards involving the SUB
instruction.
 During cycle 5, SUB writes its result back into register $2.
 The ADD instruction can read this new value from the

register file in the same cycle.

9

17

Complete pipelined datapath...so far

 0

 1

Addr

Instruction
memory

Instr

 Address

 Write
 data

Data
memory

Read
data 1

0

PC

 Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB
EX

 M

WB

 Control
 M

WB

WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

18

What about stores?

A harder case:

In what cycle is:
 The load value available?
 The store value needed?

What do we have to add to the datapath?

 DM Reg Reg IM

 DM Reg Reg IM

lw $1, 0($2)

sw $1, 0($4)

1 2 3 4 5 6

10

19

Load/Store Bypassing: Extends Datapath

 0

 1

Addr

Instruction
memory

Instr

 Address

 Write
 data

Data
memory

Read
data 1

0

PC

 Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Sequence :
lw $1, 0($2)
sw $1, 0($4)

ForwardC

1

0

20

Stall = Nop conversion

The effect of a load stall is to insert an empty or
nop instruction into the pipeline

 DM Reg Reg IM

 Reg IM

IM

lw $2, 20($3)

and -> nop

and $12, $2, $5

or $13, $12, $2
 DM Reg Reg IM

 DM Reg Reg

Clock cycle
 1 2 3 4 5 6 7 8

 DM Reg

11

21

Detecting stalls
We can detect a load hazard between the current

instruction in its ID stage and the previous instruction
in the EX stage just like we detected data hazards

A hazard occurs if the previous instruction was LW...

ID/EX.MemRead == 1

 ...and the LW destination is a current source register

 ID/EX.RegisterRt == IF/ID.RegisterRs
or

 ID/EX.RegisterRt == IF/ID.RegisterRt

The complete test for stalling is the conjunction of
these two conditions

22

Adding hazard detection to the CPU

0

1

IF
/ID

 W
rit

e

 Rs

 0

 1

Addr

Instruction
memory

Instr

 Address

 Write
 data

Data
memory

Read
data 1

0

PC

 Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt

 IF/ID

ID/EX

EX/MEM

MEM/WB
EX

 M

WB

 Control M

WB

WB

Rs

0
1
2

0
1
2

Forwarding
Unit

 EX/MEM.RegisterRd

MEM/WB.RegisterRd

Hazard
Unit

 0

 1

0

ID/EX.MemRead

P
C

 W
rit

e

 Rt

 ID/EX.RegisterRt

12

23

The hazard detection unit

The hazard detection unit’s inputs are as follows:
—  IF/ID.RegisterRs and IF/ID.RegisterRt, the source registers
—  ID/EX.MemRead and ID/EX.RegisterRt

By inspecting these values, the detection unit
generates three outputs
 Two new control signals PCWrite and IF/ID Write, which

determine whether the pipeline stalls or continues
 A mux select for a new multiplexer, which forces control

signals for the current EX and future MEM/WB stages to 0 in
case of a stall

24

Generalizing Forwarding/Stalling
What if data memory access was so slow, we wanted

to pipeline it over 2 cycles?

How many bypass inputs would the muxes in EX have?
Which instructions in the following require stalling and/

or bypassing?
 lw r13, 0(r11)
 add r7, r8, r9
 add r15, r7, r13

Clock cycle
 1 2 3 4 5 6

 DM Reg IM Reg

13

25

Branches in the original datapath

 MemToReg

Read
address

Instruction
memory

Instruction
[31-0] Address

Write
data

 Data
 memory

Read
data

MemWrite

MemRead

1

0

4

Shift
left 2

P
C

 Add

1

0

PCSrc

Sign
extend

ALUSrc

Result

Zero ALU

ALUOp

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 Add

Instr [15 - 11]

Instr [20 - 16]
0

1

 0

 1

IF/ID

ID/EX

EX/MEM

MEM/WB
EX

M

WB

 Control
M

WB

WB

When are they
resolved?

26

Branches
Most of a branch computation is done in the EX stage

 The branch target address is computed
 The source registers are compared by the ALU, and the

Zero flag is set or cleared accordingly

Thus, the branch decision cannot be made until the
end of the EX stage
 But we need to know which instruction to fetch next, in

order to keep the pipeline running!
 This leads to what’s called a control hazard

 DM Reg Reg IM
beq $2, $3, Label

? ? ?
IM

Clock cycle
 1 2 3 4 5 6 7 8

14

27

Stalling is one solution
Again, stalling is always one possible solution

Here we just stall until cycle 4, after we do make the
branch decision

 DM Reg Reg IM
beq $2, $3, Label

? ? ?
 DM Reg Reg IM

Clock cycle
 1 2 3 4 5 6 7 8

IM

28

Branch prediction
Another approach is to guess whether branch is taken

 For hardware, it’s easier to assume the branch is not taken
 This way we just increment the PC and continue execution,

as for normal instructions.

If we’re correct, then the pipeline runs at full speed

 DM Reg Reg IM
beq $2, $3, Label

next instruction 1

next instruction 2

 DM Reg Reg IM

Clock cycle
 1 2 3 4 5 6 7

 DM Reg Reg IM

15

29

Branch misprediction
If we guess wrong, then we have already started

executing 2 instructions incorrectly and must discard,
or flush, those instructions and begin executing the
right ones from the branch target address, Label

 DM Reg Reg IM beq $2, $3, Label

next instruction 1

next instruction 2

Label: . . .

Reg IM

Clock cycle
 1 2 3 4 5 6 7 8

IM

 DM Reg Reg IM

flush

flush

30

Performance gains and losses
Overall, branch prediction is worth it

 Mispredicting a branch wastes two clock cycles
 But if the prediction is even occasionally correct, then it is

preferable to stalling and wasting 2 cycles for every branch

All modern CPUs use branch prediction
 Accurate predictions are important for optimal performance
 Most CPUs predict branches dynamically—statistics are kept

at run-time to determine the likelihood of a branch being taken

Pipeline structure also has a big impact on branch
prediction
 A deeper pipeline may require more instructions be flushed on

a misprediction, resulting in more wasted time, lower
performance

 We must also be careful that instructions do not modify
registers or memory before they get flushed

16

31

Implementing branches
We can actually decide the branch a little earlier, in ID

instead of EX
 Our sample instruction set has only a BEQ
 We can add a small comparison circuit to the ID stage, after

the source registers are read

Then we would only need to flush one instruction on a
misprediction

 DM Reg Reg IM
beq $2, $3, Label

next instruction 1

Label: . . .

IM

Clock cycle
 1 2 3 4 5 6 7

 DM Reg Reg IM

flush

32

Implementing flushes
We must flush one instruction (in its IF stage) if the

previous instruction is BEQ and its two source
registers are equal

We can flush an instruction from the IF stage by
replacing it in the IF/ID pipeline register with a
harmless nop instruction

Flushing introduces a bubble into the pipeline, which
represents the one-cycle delay in taking the branch

The IF.Flush control signal shown on the next page
implements this idea, but no details are shown in the
diagram

17

33

Branching w/o forwarding and load stalls

 0

 1

Addr

Instruction
memory

Instr

 Address

 Write
 data

Data
memory

Read
data 1

0
 Extend

ALUSrc Result

Zero
ALU

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB
EX

 M

WB

 Control
 M

WB

WB

 =

 Add
Shift
left 2

4

P
C

1

0

PCSrc

IF.Flush

The other
stuff just
won’t fit!

34

Timing
If no prediction:

 IF ID EX MEM WB
 IF IF ID EX MEM WB --- lost 1 cycle

If prediction:
 If Correct

IF ID EX MEM WB
 IF ID EX MEM WB -- no cycle lost

 If Misprediction:
IF ID EX MEM WB
 IF0 IF1 ID EX MEM WB --- 1 cycle lost

18

35

Summary
Three kinds of hazards make pipelining difficult
Structural hazards result from not having enough

hardware to execute multiple instructions at once
 These are avoided by adding more functional units (e.g.,

more adders or memories) or by redesigning the pipeline.

Data hazards can occur when instructions need to
access registers that haven’t been updated yet
 Hazards from R-type instructions can be avoided with

forwarding
 Loads can result in a “true” hazard, which must stall the pipe

Control hazards arise when the CPU cannot determine
which instruction to fetch next
 We can minimize delays by doing branch tests earlier in the

pipeline
 We can also take a chance and predict the branch direction,

to make the most of a bad situation

