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Topics
� We've seen how the ISA supports individual user 

applications

� You know how to �compile� C code, say, to assembler

� The instruction set we've seen is enough to implement all of 
C (for instance)

� How do computer systems work?

� What's the role of the ISA?

� What's the role of the OS?

� How are these related to the roles of the compiler, linker, 
loader?

  3

Roles of the OS

� Resource management

� Allocate CPU time, memory, disk space, disk use, network 
bandwidth, etc.

� Protection

� Limit access to resources to authorized users

� Key notion to today's topics: process

� A process is a program in execution
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The Hardware/Software Interface

Source Files

Libraries

Compiler, Assembler,
Linker

Disk

CPU
User

Process

Loader
OS

Boot
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Background: View of Runtime

� Use of the CPU alternates between the OS and user 
processes

� On entry to OS, process state is saved

� PC and register contents written to save area in OS memory

� Process dispatch is handing CPU back to a user 
process

� Reload register contents, and jump back to saved PC

Time

OS User Process OS User Process OS User Process OS ������
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Context For Today's Topics

� The goal is �a computer system� that can do the sorts 
of things you're used to:

� I/O

� Run more than one app at a time, etc.

� Achieving this high level goal is an orchestration of:

� Software: the OS, linker, compiler, libraries, etc. have 
cooperating roles

� ISA: must provide some key functionality

� This is particularly the case for allowing the OS to do things its 
responsible for

� Hardware: must implement the ISA

  7

Today vs. Tomorrow

� For concreteness, we'll be talking today about the 
Cebollita architecture

� It contains most concepts required to understand a current 
(desktop) computer

� The techniques used lie somewhere in the past on the 
computer's evolutionary tree

� We'll look at more modern virtual memory concepts a 
little later in the course

� More sophisticated OS facilities and implementations are CSE 451
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Topics
� Today:

� Address Translation (Virtual Memory)

� Managing main memory

� Exceptions

� Managing the CPU

� Memory Mapped Devices

� An implementation technique

� Friday:

� I/O

� System calls
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Address Translation: Why?

Problems

1. Loader has to patch j-type 
instructions

j address

OS

APP 0
(Shell)

APP 1

APP 2

Memory

APP 3

0x40000

0x0

0x48000

0x50000

0x56000
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Address Translation: Why?

Problems

1. Loader has to patch j-type instructions

2. Memory fragmentation
       Why can't OS just move APP 2?

OS

APP 0
(Shell)

APP 2

Memory

0x40000

0x0

0x48000

0x50000

0x56000
APP 4
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Address Translation: Why?

Problems

1. Loader has to patch j-type instructions

2. Memory fragmentation

3. Process isolation (protection)

OS

APP 0
(Shell)

APP 2

Memory

0x40000

0x0

0x48000

0x52000

APP 4

sw    $t0, 8($t1)

$t1:  0x00048800
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Cebollita Address Translation

OS

APP 0
(Shell)

APP 2

Physical (Real) Memory

0x40000

0x0

0x48000

0x52000

APP 4

APP 2

APP 4

Virtual Address Spaces

� All applications believe they're loaded at 0

� They operate using virtual addresses
� The addresses they would use if they were 

actually loaded at address 0
� This is exactly the model we've used up to 

now

�  The hardware performs address translation
� Adds 0x48000 to every address generated 

by APP2
� Adds 0x52000 to every address generated 

by APP4
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Cebollita Address Translation

OS

APP 0
(Shell)

APP 2

Physical (Real) Memory

0x40000

0x0

0x48000

0x52000

APP 4

APP 2

APP 4

Virtual Address Spaces

� A virtual address is an offset from the 
start of the virtual address space

� In Cebollita, VAS's are loaded into 
contiguous memory

� Address translation in Cebollita is 
therefore simply adding the base address 
of the physical memory chunk to the virtual 
address

0x800

0x52800

0x48800

0x800
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(Partial) Implementation

Register
File

ALU

Sign
Extend

sw    $t0, 8($t1)

Memory
Interface

+

0x52000

Memory Base Register

Virtual
Address

Physical (Real)
Address
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Address Translation: Cebollita ISA

� Memory Base Register
� (Real) base address of process
� real address = virtual address + memory base

� Memory Length Register
� Size of process image (in bytes)
� If ( virtual address > memory length ) then ERROR

� Memory Size Register
� Size of real (physical) memory
� A convenience for the OS

� The Cebollita ISA specifies:

� How (and when) address translation is performed

� Three (new) registers:
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Updated View of CPU

32 GPRs

PC
Mem Base

Mem Length

Mem Size

OS

APP 0
(Shell)

APP 2

APP 4
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Address Translation: OS

� First pass overview:

� The loader (OS) finds enough contiguous memory to hold 
the new process image

� The process image is read from disk into that memory

� The memory base and length registers are set

� Problem: What happens when mem base register is set?

� The OS jumps to the entry point of the new process
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Address Translation: Protection

� Process isolation is the most important benefit of (the 
Cebollita) address translation

� Process isolation requires checking access permission 
per-instruction

� There must be hardware support

� Virtual addresses provide isolation by making it 
impossible for one process to name the memory 
belonging to another process

� There is no memory address a process can utter that names 
the physical memory used by another process (so long as 
the OS makes no mistakes in setting the base register)
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Updated View of ISA

32 GPRs

PC

Mem Base

Mem Length

Mem Size

User 
Process

CPU (Virtual) Memory

Registers in blue are accessible
only to the OS.
(Why?)
(How?)
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The Exception Architecture
� The exception architecture defines how transitions between 

running user code and the OS take place

� Example reasons to want to transition from the user app to the 
OS

� The user app wants to do something only the OS can do

� E.g., read or write disk

� Invoking a procedure in the OS is a �system call� (syscall)

� The user app has made some kind of mistake

� E.g., referenced a virtual address that is larger than the size of its address space

� These are called �exceptions�

� Some device needs attention

� E.g., a packet has arrived off the network

� These are called �interrupts�
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The Cebollita Exception Architecture

� The ISA specifies four new registers:

� EPC:  the PC when the exception/interrupt occurred

� Handler Address:  what the PC should be set to

� This is the address of the OS's trap handler routine

� Cause: indicates what happened

� E.g., 4 means addressing exception;  16 means overflow; 2 means 
disk needs attention

� Status:  a bit mask

� Privilege bit: set to 1 if the OS is  currently running; 0 if a user app

� Interrupt enable bit: set to 0 to disable �raising exceptions/interrupts
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Exceptions: ISA

� When an exception or interrupt occurs, if the interrupt 
enable bit is 0, ignore (or leave pending)

� Otherwise, do all this in the current cycle:

� Save the current value of the PC in register EPC

� Set the PC to the value of the trap handler address register

� Set the value of the Cause register

� Update the status register:

� Set the privilege bit on  (because the next instruction to be executed 
is the trap handler, in the OS)

� Set the interrupt enable bit off
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Exceptions: ISA Mechanics

OS

User
Process

PC: 0x200

EPC: xxxxx

Cause: xxxxx

Handler: 0x1E0

Status: 0....10

PC: 0x1E0

EPC: 0x200

Cause: 4

Handler: 0x1E0

Status: 0....01

Before exception After exception

This is the only way for a user process to �enter� the OS

  24

Exceptions: OS Trap Handler
� First thing trap handler does is save the 31 general 

purpose registers (GPRs), plus the EPC

� Next, it looks at the cause register, and decides what 
to do:

� E.g., if it's a syscall, it branches to the syscall handler code

� If it's a fatal program error, it terminates the process, etc.

� When done, OS picks a runnable process and 
dispatches it

� Loads 31 GPRs using saved register values

� Causes, simultaneously, a branch to where the process was last 
executing (saved EPC) and change of Status register to 
unprivileged and interrupts enabled

� There's a special instruction for this: rfe
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Another View of Mechanics

User Process OSISA

� save GPRs
� switch(Cause) { .... }
� restore GPRs
� rfe

EPC = PC
PC = Trap Handler Address
Cause = ...
Status = 0....01

PC = EPC
Status = 0....10

syscall

This example shows a syscall 
instruction being executed by the 
user process, but everything else 
is the same for all exceptions and 
interrupts
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(Difficult) Comprehension Check

Do OS instructions issue real addresses or virtual addresses?
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Summary to this Point

32 GPRs

PC

Mem Base

EPC

���

� Requirements:

� Must have instructions 
to read/write special 
registers

� The OS needs them

� Can't let user 
processes read/write 
special registers

� How can we do that?
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One Approach

� Define new instructions for reading / writing special 
registers

� ReadSpecial $8, $membase

� WriteSpecial $membase, $8

� The new instructions cause an error unless the CPU is 
operating in privileged mode

� �Privileged instruction exception�

� Et voila...
� If you look at the MIPS Programmer Manual, you'll see the bulk of the instructions there are of 

this sort
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Cebollita ISA: Memory Mapped Devices

32 GPRs

PC Memory

0x00000000

0x40000000
0x40000004
0x40000008

���
Now can use lw and sw to read / 
write the special registers.
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Idea of the Implementation

Register
File

ALU

Sign
Extend

Memory
Interface

+

Virtual
Address

Physical (Real)
Address

���

Memory base reg
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Why Does This Work?
� OS can read / write these registers

� If a user process tries to read or write them:

� It has to construct and use an address no smaller than 
0x40000000

� That causes an addressing exception

� The memory allocated to it is smaller than that
� The address it issued is larger than the memory length register
� Addressing exception

� A side-effect of this design is that no virtual address space can 
be bigger than 0x40000000 bytes long

� Not a worry for us...

� Note: Physical memory could still be 232 bytes

� There'd be a chunk �missing�
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Summary
� Processes issue virtual addresses; hardware performs 

address translation to get real address

� Allows flexibility in use of main memory

� Provides process isolation / protection

� CPU have privileged and unprivileged modes

� Allows OS to do things user processes can't

� Exception architecture ensures that:

� The only way to go into privileged mode is to enter the OS

� The only place to enter the OS is the trap handler

� Memory mapped devices exploits these properties to 
provide access to control registers without needing 
new instructions


