

 1

Supporting an Operating System

CSE 378 Spring 2009

 2

Topics
� We've seen how the ISA supports individual user

applications

� You know how to �compile� C code, say, to assembler

� The instruction set we've seen is enough to implement all of
C (for instance)

� How do computer systems work?

� What's the role of the ISA?

� What's the role of the OS?

� How are these related to the roles of the compiler, linker,
loader?

 3

Roles of the OS

� Resource management

� Allocate CPU time, memory, disk space, disk use, network
bandwidth, etc.

� Protection

� Limit access to resources to authorized users

� Key notion to today's topics: process

� A process is a program in execution

 4

The Hardware/Software Interface

Source Files

Libraries

Compiler, Assembler,
Linker

Disk

CPU
User

Process

Loader
OS

Boot

 5

Background: View of Runtime

� Use of the CPU alternates between the OS and user
processes

� On entry to OS, process state is saved

� PC and register contents written to save area in OS memory

� Process dispatch is handing CPU back to a user
process

� Reload register contents, and jump back to saved PC

Time

OS User Process OS User Process OS User Process OS ������

 6

Context For Today's Topics

� The goal is �a computer system� that can do the sorts
of things you're used to:

� I/O

� Run more than one app at a time, etc.

� Achieving this high level goal is an orchestration of:

� Software: the OS, linker, compiler, libraries, etc. have
cooperating roles

� ISA: must provide some key functionality

� This is particularly the case for allowing the OS to do things its
responsible for

� Hardware: must implement the ISA

 7

Today vs. Tomorrow

� For concreteness, we'll be talking today about the
Cebollita architecture

� It contains most concepts required to understand a current
(desktop) computer

� The techniques used lie somewhere in the past on the
computer's evolutionary tree

� We'll look at more modern virtual memory concepts a
little later in the course

� More sophisticated OS facilities and implementations are CSE 451

 8

Topics
� Today:

� Address Translation (Virtual Memory)

� Managing main memory

� Exceptions

� Managing the CPU

� Memory Mapped Devices

� An implementation technique

� Friday:

� I/O

� System calls

 9

Address Translation: Why?

Problems

1. Loader has to patch j-type
instructions

j address

OS

APP 0
(Shell)

APP 1

APP 2

Memory

APP 3

0x40000

0x0

0x48000

0x50000

0x56000

 10

Address Translation: Why?

Problems

1. Loader has to patch j-type instructions

2. Memory fragmentation
 Why can't OS just move APP 2?

OS

APP 0
(Shell)

APP 2

Memory

0x40000

0x0

0x48000

0x50000

0x56000
APP 4

 11

Address Translation: Why?

Problems

1. Loader has to patch j-type instructions

2. Memory fragmentation

3. Process isolation (protection)

OS

APP 0
(Shell)

APP 2

Memory

0x40000

0x0

0x48000

0x52000

APP 4

sw $t0, 8($t1)

$t1: 0x00048800

 12

Cebollita Address Translation

OS

APP 0
(Shell)

APP 2

Physical (Real) Memory

0x40000

0x0

0x48000

0x52000

APP 4

APP 2

APP 4

Virtual Address Spaces

� All applications believe they're loaded at 0

� They operate using virtual addresses
� The addresses they would use if they were

actually loaded at address 0
� This is exactly the model we've used up to

now

� The hardware performs address translation
� Adds 0x48000 to every address generated

by APP2
� Adds 0x52000 to every address generated

by APP4

 13

Cebollita Address Translation

OS

APP 0
(Shell)

APP 2

Physical (Real) Memory

0x40000

0x0

0x48000

0x52000

APP 4

APP 2

APP 4

Virtual Address Spaces

� A virtual address is an offset from the
start of the virtual address space

� In Cebollita, VAS's are loaded into
contiguous memory

� Address translation in Cebollita is
therefore simply adding the base address
of the physical memory chunk to the virtual
address

0x800

0x52800

0x48800

0x800

 14

(Partial) Implementation

Register
File

ALU

Sign
Extend

sw $t0, 8($t1)

Memory
Interface

+

0x52000

Memory Base Register

Virtual
Address

Physical (Real)
Address

 15

Address Translation: Cebollita ISA

� Memory Base Register
� (Real) base address of process
� real address = virtual address + memory base

� Memory Length Register
� Size of process image (in bytes)
� If (virtual address > memory length) then ERROR

� Memory Size Register
� Size of real (physical) memory
� A convenience for the OS

� The Cebollita ISA specifies:

� How (and when) address translation is performed

� Three (new) registers:

 16

Updated View of CPU

32 GPRs

PC
Mem Base

Mem Length

Mem Size

OS

APP 0
(Shell)

APP 2

APP 4

 17

Address Translation: OS

� First pass overview:

� The loader (OS) finds enough contiguous memory to hold
the new process image

� The process image is read from disk into that memory

� The memory base and length registers are set

� Problem: What happens when mem base register is set?

� The OS jumps to the entry point of the new process

 18

Address Translation: Protection

� Process isolation is the most important benefit of (the
Cebollita) address translation

� Process isolation requires checking access permission
per-instruction

� There must be hardware support

� Virtual addresses provide isolation by making it
impossible for one process to name the memory
belonging to another process

� There is no memory address a process can utter that names
the physical memory used by another process (so long as
the OS makes no mistakes in setting the base register)

 19

Updated View of ISA

32 GPRs

PC

Mem Base

Mem Length

Mem Size

User
Process

CPU (Virtual) Memory

Registers in blue are accessible
only to the OS.
(Why?)
(How?)

 20

The Exception Architecture
� The exception architecture defines how transitions between

running user code and the OS take place

� Example reasons to want to transition from the user app to the
OS

� The user app wants to do something only the OS can do

� E.g., read or write disk

� Invoking a procedure in the OS is a �system call� (syscall)

� The user app has made some kind of mistake

� E.g., referenced a virtual address that is larger than the size of its address space

� These are called �exceptions�

� Some device needs attention

� E.g., a packet has arrived off the network

� These are called �interrupts�

 21

The Cebollita Exception Architecture

� The ISA specifies four new registers:

� EPC: the PC when the exception/interrupt occurred

� Handler Address: what the PC should be set to

� This is the address of the OS's trap handler routine

� Cause: indicates what happened

� E.g., 4 means addressing exception; 16 means overflow; 2 means
disk needs attention

� Status: a bit mask

� Privilege bit: set to 1 if the OS is currently running; 0 if a user app

� Interrupt enable bit: set to 0 to disable �raising exceptions/interrupts

 22

Exceptions: ISA

� When an exception or interrupt occurs, if the interrupt
enable bit is 0, ignore (or leave pending)

� Otherwise, do all this in the current cycle:

� Save the current value of the PC in register EPC

� Set the PC to the value of the trap handler address register

� Set the value of the Cause register

� Update the status register:

� Set the privilege bit on (because the next instruction to be executed
is the trap handler, in the OS)

� Set the interrupt enable bit off

 23

Exceptions: ISA Mechanics

OS

User
Process

PC: 0x200

EPC: xxxxx

Cause: xxxxx

Handler: 0x1E0

Status: 0....10

PC: 0x1E0

EPC: 0x200

Cause: 4

Handler: 0x1E0

Status: 0....01

Before exception After exception

This is the only way for a user process to �enter� the OS

 24

Exceptions: OS Trap Handler
� First thing trap handler does is save the 31 general

purpose registers (GPRs), plus the EPC

� Next, it looks at the cause register, and decides what
to do:

� E.g., if it's a syscall, it branches to the syscall handler code

� If it's a fatal program error, it terminates the process, etc.

� When done, OS picks a runnable process and
dispatches it

� Loads 31 GPRs using saved register values

� Causes, simultaneously, a branch to where the process was last
executing (saved EPC) and change of Status register to
unprivileged and interrupts enabled

� There's a special instruction for this: rfe

 25

Another View of Mechanics

User Process OSISA

� save GPRs
� switch(Cause) { }
� restore GPRs
� rfe

EPC = PC
PC = Trap Handler Address
Cause = ...
Status = 0....01

PC = EPC
Status = 0....10

syscall

This example shows a syscall
instruction being executed by the
user process, but everything else
is the same for all exceptions and
interrupts

 26

(Difficult) Comprehension Check

Do OS instructions issue real addresses or virtual addresses?

 27

Summary to this Point

32 GPRs

PC

Mem Base

EPC

���

� Requirements:

� Must have instructions
to read/write special
registers

� The OS needs them

� Can't let user
processes read/write
special registers

� How can we do that?

 28

One Approach

� Define new instructions for reading / writing special
registers

� ReadSpecial $8, $membase

� WriteSpecial $membase, $8

� The new instructions cause an error unless the CPU is
operating in privileged mode

� �Privileged instruction exception�

� Et voila...
� If you look at the MIPS Programmer Manual, you'll see the bulk of the instructions there are of

this sort

 29

Cebollita ISA: Memory Mapped Devices

32 GPRs

PC Memory

0x00000000

0x40000000
0x40000004
0x40000008

���
Now can use lw and sw to read /
write the special registers.

 30

Idea of the Implementation

Register
File

ALU

Sign
Extend

Memory
Interface

+

Virtual
Address

Physical (Real)
Address

���

Memory base reg

 31

Why Does This Work?
� OS can read / write these registers

� If a user process tries to read or write them:

� It has to construct and use an address no smaller than
0x40000000

� That causes an addressing exception

� The memory allocated to it is smaller than that
� The address it issued is larger than the memory length register
� Addressing exception

� A side-effect of this design is that no virtual address space can
be bigger than 0x40000000 bytes long

� Not a worry for us...

� Note: Physical memory could still be 232 bytes

� There'd be a chunk �missing�
 32

Summary
� Processes issue virtual addresses; hardware performs

address translation to get real address

� Allows flexibility in use of main memory

� Provides process isolation / protection

� CPU have privileged and unprivileged modes

� Allows OS to do things user processes can't

� Exception architecture ensures that:

� The only way to go into privileged mode is to enter the OS

� The only place to enter the OS is the trap handler

� Memory mapped devices exploits these properties to
provide access to control registers without needing
new instructions

