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Supporting an Operating System
Part 2: IO, System Calls, and Boot
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Review
� The exception architecture provides a protected way 

to cause a jump into OS code:

� PC is set to trap handler entry point

� This is the only way to set Status to privileged mode

� Memory mapping provides a general facility for 
introducing components into the datapath without 
introducing new instructions
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Overview of IO

� All external interactions are IO

� Keyboard, display, disk, network, scanner, camera, etc.

� It would be a mistake to tightly couple IO devices to 
CPU architecture

� E.g., don't want to have a �write to disk� instruction

� Why?

� Similarly, it would be a mistake to tightly couple IO 
devices to an operating system's implementation

� Finally, we'd even like to decouple the application code 
from the OS (i.e., portable languages/applications)
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A General View of IO
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Controller  Device Interface�

� Presents a standard interface that isolates upstream 
components (bus, CPU, OS) from specific devices

� Hitachi vs. Seagate drive

� VGA vs. DVI vs. HDMI display
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CPU / OS  Controller�

� Controller offloads work from CPU

� CPU tells video card �Draw a (width=300, height=200) blue filled 
rectangle at pixel location (400, 525)�

� Don't want to impede use of controllers that are 
invented after the CPU and/or OS are created

� CPU

� No special instructions to talk with controllers

� Instead, controllers are memory mapped

� OS

� Encapsulate code that understands how to talk with controller in a 
driver

� Allow introduction of driver to OS after OS has been installed

� E.g., put new driver in special directory that OS looks at during boot
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CPU / OS  Controller�
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Each type of controller defines 
what commands are available, 
and what the responses mean

� Command issued using a store word (sw) on CPU

� Response read using a load word (lw) on CPU
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Application  OS�
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fprintf(...);
The library code knows how to 
make the appropriate system call 
for the OS on which its running.
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Cebollita / SMOK
� Cebollita includes all of these concepts

� An iolib.s library

� An os with (built-in) drivers that talk with controllers

� Hardware controller components that talk with IO devices

� SMOK implements these controllers as well

� Character controller

� Output side is the display (character display, not pixels)

� Input side is the keyboard

� Disk controller

� Input and output sides are a disk
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Cebollita/SMOK Character IO

� Operates asynchronously

� Output side:

� Bit 15: If one, indicates the device is ready to print a 
character

� Bit 14: If on, indicates that a keyboard character is available

� Bits 0-7: The keyboard character

� Input side:

� Bit 15: Start a character write.

� Bit 14: Clear the "keyboard character ready" status bit.

� Bits 0-7: The character to write if bit 15 is on. 
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Example Use: Write a Character

� $t0 has the memory mapped address of the character 
controller

� $a0 has the character to write

� wait: lw $t1, 0($t0)

andi $t1, $t1, 0x8000

beq $t1, $0, wait

ori $t1, $a0, 0x8000

sw $t1, 0($t0)

� This is a busy wait loop

� This is also polled I/O

  12

How Do We Read a Character

� Using busy wait and polled I/O

� Code:
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Disk I/O

� The logical organization of a disk is as an array of 
blocks

� Blocks are typically in the range 512B to 8KB

� The disk's unit of addressing is the block

� Disks are direct memory access (DMA) devices

� They read/write direction from/into memory

Note: We're talking about the physical devices, not files.  �File� is an operating system abstraction.
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Cebollita/SMOK Block Controller
� Four inputs:

� Control (commands)

� Bit 15: start a read

� Bit 14: start a write

� Bit 13: clear exceptions

� Memory address (for DMA)

� Disk Address (block number)

� Count (#blocks to transfer)

� Outputs:

� Status: indicates state of device

� Bit 15: busy reading

� Bit 14: busy writing

� Bit 13: exception has occurred

� Bits 0-7: Exception cause

� Bit 0: I/O completion

� Bit 1: bad memory address

� ...
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Reading a Disk Block

� Busy wait to start:

� Read the device status until bits 15 and 14 
are 0

� Write the address of a buffer in memory to 
the memory address port

� Write the disk block address to the disk 
address port

� Write the block count to the count port

� Write 0x40000 to the control port

� Busy wait to recognize completion:

� Loop reading status until bit 15 is 1

� Bit 13 should now be on, and bits 0-7 should 
have value 0

� Write 0x2000 to the control input to clear the 
exception

Disk

CPU
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Integrating the Block Controller

� Each of the four inputs is memory mapped

� 0x40000010:  control

� 0x40000014:  memory (buffer) address

� 0x40000018:  disk (block) address

� 0x4000001C:  block count

� The status output is also memory mapped:

� 0x40000010

� The exception output could be used to provide 
interrupt driven IO, rather than polled
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Interrupt Driven I/O

� How can the OS tell when the transfer is done?

� Could sit in a busy loop reading the controller status

� Busy waiting

� Could check every once in a while

� Polling

� Or... the controller could raise an I/O completion interrupt

� Interrupts are �asynchronous exceptions�

� They cause a transfer of control to the trap handler

� When they occur has nothing to do with the instruction 
currently being executed by the CPU
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Polling vs. Completion Interrupts

� It should be obvious what the advantages of 
completion interrupts are

� Cebollita uses polling and busy waits...
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Next Topic: System Calls

� System calls are �protected procedure calls� of methods 
implemented in the OS

� These methods have root privilege (so can do IO, for instance)

� Invoked using a special instruction, syscall

� syscall causes an exception (i.e., jump to trap handler)

� The cause register indicates a syscall happened

� jal vs. syscall

� jal: caller decides what next PC will be

� syscall: callee decides what next PC will be (trap handler)
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syscall convention

� Just like procedure call, we need a convention to define how to 
pass arguments and how to get return values

� We could also have a convention about saving registers, but...

� Because OS must handle interrupts, it must be prepared to save everything itself

� Why?

� Since the caller isn't specifying a next PC address, we also 
need to communicate which OS method to invoke

� Passed as a system call number (an int)

� Cebollita conventions:

� $v0:  syscall number (which method to invoke)

� $a0 ...: argument(s)

� $v0: return value
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Cebollita iolib

.text

        .global printInt

printInt:

        ori     $v0, $0, 1

        lw      $a0, 0($sp)

        syscall

        jr      $ra

        .global readInt

readInt:

        ori     $v0, $0, 5

        syscall

        jr      $ra

...
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Next Topic: Boot

� When machine is powered on, need to load the OS

� But:

� Registers are nonsense

� Memory is nonsense

� Need some �initial program� that isn't nonsense

� BIOS, stored in NVRAM (non-volatile RAM)

� BIOS contains a very small, OS independent program

� Loads block 0 of boot device into memory at location 0

� Branches to location 0
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Boot

� Block 0 of the boot device contains the boot loader

� The boot loader has enough smarts to load the 
remainder of the OS into memory

� It then branches to the entry point of the OS, which 
initializes itself

� Once initialized (booted), the OS launches some initial 
process(es)

� The login process, or...

� A shell
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Cebollita Boot In Pictures
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Wrap Up

� That's pretty much everything

� As always, Cebollita favors simple above all else

� Real systems make some other decisions

� HW5 is about implementing a machine capable of 
supporting all these mechanisms

� New hardware components are introduced into datapath

� New control is required

� (Possibly some modification of software, e.g., the OS)


