

CSE 378
Machine Organization

and Assembly Language Programming

Spring 2009

John Zahorjan
Ivayla Dermendjieva

David St. Hilaire

Today

�Part 1: Course Mechanics

�Part 2: Course Overview

Mechanics: Course Goals: Part 1

� For 97% of us, computer architecture is �hardware�

� It�s what�s above CSE 370 and below CSE 451 (and 341
and142/3 and 341 and 401 and ...)

�One focus of CSE 378 is how this software is
organized, and how to make it fast

�We�re also going to be interested in the
�hardware/software interface�

� What does a compiler do?

� What does an OS do?

� What support does the hardware provide?

This Version of 378

�Software simulators, rather than hardware

�Pros:

� Greater breadth (by which I mean depth)

- Compiler, OS, shell, and applications

� �Easier debugging�

� Fewer hidden gotchas

� �Work where you want, when you want�

�Cons

� New set of tools (Cebollita / SMOK)

� Not as useful a pre-req for CSE 466 / 471

- But a better pre-req for a lot of other courses, and non-courses

Moore's Law (1975)

Course Goals, Part II: Parallelism

Parallel Execution of Sequential Code

� �Sequential code�

� c=0;
if (a<0) c=1;

�Parallel Execution Approaches

� Pipelining

� Multiple issue

� Multi-threading

� Multi-core

�All these approaches have something to teach us about
turning sequential code into �explicitly parallel code�

Multicores (Explicitly Parallel Code)

Mechanics: Prerequisites

�CSE 370

� Binary / hex integers

� Basic machine organization: memory, registers, ALU, control,
clock-cycle (?)

� (378 is logical organization, not logic)

�CSE 303 / 143

� Java � not so much Java programming, as running Java
programs

- javac, java, classpath, jar, an editor

� C � we�ll be using C--, a C subset, but we won�t be doing
much programming in it.

� Unix � we�ll be using a Unix shell (cygwin, at least) in very
modest ways. (We�ll also be using Windows.)

� Shell and make

Mechanics: Homework

�Some problems from the book

� The majority of the work will be building a working
machine

� Three incremental projects

� Working in pairs if you like

- Dividing the workload isn�t easy

� The final result will be a working processor that runs an
operating system and a simple shell (plus applications)

� The challenge is mastering breadth

What the assignments show you

�What you see using a computer is created by layering

� Software using software (libraries)

� Software using hardware

�Very impressive things are ultimately achieved, even
though each layer is doing something extremely simple

� So long as they can do it fast enough...

�Simple Is Good

� Simple is fast

� Simple is flexible

An example: Java

�You probably think of computers as �Java� (and vice
versa)

�A problem people often have in this course is forgetting
about that

� The processor isn't trying to execute Java

� It's very primitive:

- add 0100010000111101 and 010111101000111

� Java is a whole lot of adding (plus some other things, like
conditionals)

Mechanics: Exams

� Two midterms

� Monday, April 20 (subject to change)

� Monday, May 18 (subject to change)

�One final

� Monday, June 8 (8:30-10:20)

Mechanics: Grading

� 40% homeworks

� 10% first midterm

� 15% second midterm

� 30% final (covers entire quarter)

� 5% other

Mechanics: Late Policy

�Assignments:

� Mostly electronic turn-in

� We could be very rigid about the exact turn-in time�

� 20% / day late penalty

� 2 free extension days (at your discretion)

� Make sure to clearly notify the TA

Mechanics: Academic Misconduct

� �In general, any activity you engage in for the purpose
of earning credit while avoiding learning, or to help
others do so, is likely to be an act of Academic
Misconduct.�

�Different people learn best in different ways.

� It�s never cheating to interact with course staff.

Mechanics: Interacting with Live Course Staff

� Lectures

� Speaking up is good (for everyone, but especially me).

�Sections

� Oriented towards clarifying issues with lectures / homeworks,
rather than providing additional information.

�Office hours:

� Me: Tuesdays, 2:00-3:00 (Sieg 534), by appointment,
whenever

� TAs: TBD

Mechanics: Interacting with Course Staff

�E-mail

�Anonymous feedback

� Link off course home page to provide it
- Go faster / go slower
- Can we have an extension?
- More / less homework

� Link off course home page to read it

- All submitted anonymous feedback that has �permission to post
publicly� checked, minus anything libelous

�Course wiki

� User-editable web

�Class mailing list

� You should subscribe (directions on course home page)

� Mostly one-way communication

Brief
Intermission

((More) Questions?)

One View of the Hardware (Simplified)

CPU

Bus

Main Memory

Disk
(Disc)

Where are your program's variables?
Where is your program?

Basic Operation of CPU

CPU

Bus

Main Memory

Disk
(Disc)while (true) {

 fetch an instruction
 update PC
 execute instruction
}

How Does the CPU �Name� the Next Instruction?

CPU

Bus

Main Memory

Disk
(Disc)while (true) {

 fetch an instruction
 update PC
 execute instruction
}

Program Counter

Performance: Accessing Memory Is Slow

Bus

Main Memory

Disk
(Disc)

Register File

CPU

PC

The register file holds data (not instructions).
Registers are hardware � your program can't create them.

What Does an Instruction Look Like?

� 00100011?

� Instruction Format:

� Defines which bits mean what

� OP: 4 bits

- �opcode�: What the operation is

� Add (0000)

� Subtract (0001)

� Or (0010)

� Etc.

� Operands: 2 bits each

- What to operate on

� Register 0 (00), 1 (01), 2 (10) or 3 (11)

OP Operand 1 Operand 2

This is just an
example!

What Does an Instruction Look Like?

� 00100111?

� Instruction Format:

� Defines which bits mean what

� OP: 4 bits

- �opcode�: What the operation is

� Add (0000)

� Subtract (0001)

� Or (0010)

� Etc.

� Operands: 2 bits each

- What to operate on

� Register 0 (00), 1 (01), 2 (10) or 3 (11)

OP Operand 1 Operand 2

Or contents of register 3
with contents of register 1
and put result in register 1

or $1,$3

26

From C to Machine Language

a = b + c;

add $16, $17, $18

Compiler

Assembler

01010111010101101...

High-level
language (C)

Assembly
Language
(MIPS)

Binary
Machine
Language
(MIPS)

Another View: Instruction Set Architecture

ISA
Interface

Software

Hardware

� What instructions are there?
� How are they encoded?
� How many registers are there?
� How do you �name� data in memory?
� Etc.

What is �Computer Architecture�?

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
 Architecture

Firmware

Datapath & Control

Layout

MIPS R2000 ISA

� 32 registers (in register file)

�Each register is 32 bits wide

� �load-store� architecture

� Source operands must be in registers

� Result goes into a register

�MIPS is a �reduced instruction set� (RISC) architecture

� Designed for parallelism (pipelining)

�mips.com sells architectures (not hardware)

