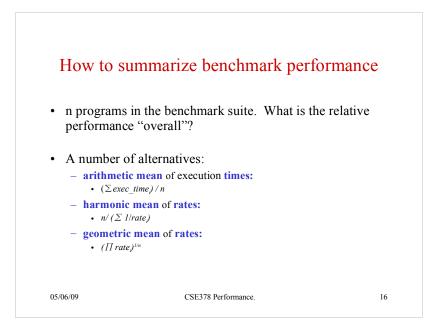
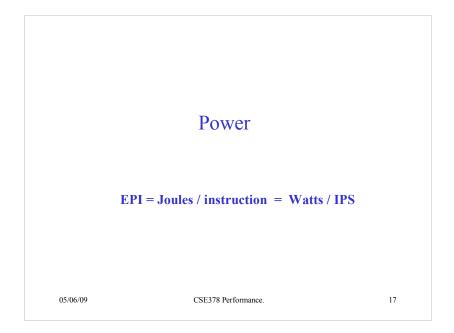
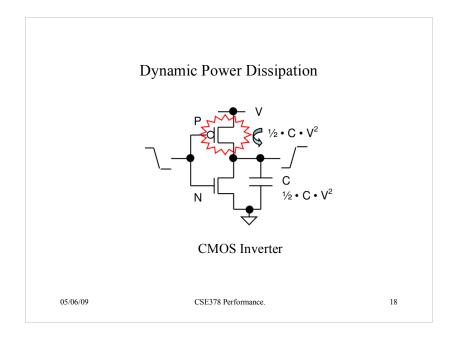
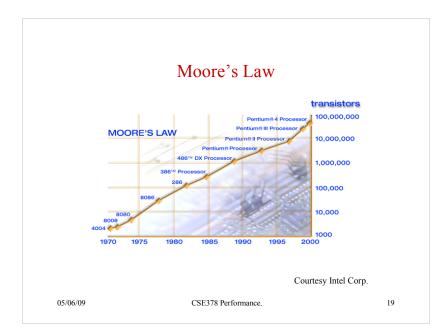


	Execution time Metric
• Execution t	ime: inverse of performance
Performa	$ace_{A} = 1 / (Execution_{time_{A}})$
• "Processor	A is faster than Processor B"
Execution_ti	$me_A < Execution_time_B$
Performance	$_{A} > Performance_{B}$
Relative per	formance (a computer is "n times faster" than another one)
-	$_{A}$ / Performance $_{B}$ = Execution_time $_{B}$ / Execution_time $_{A}$

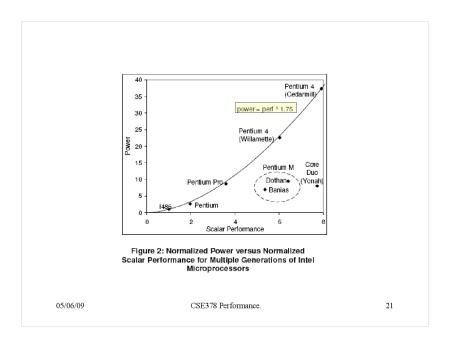


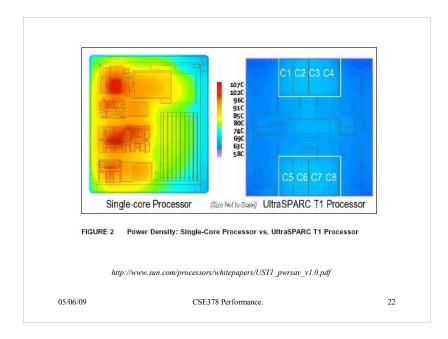


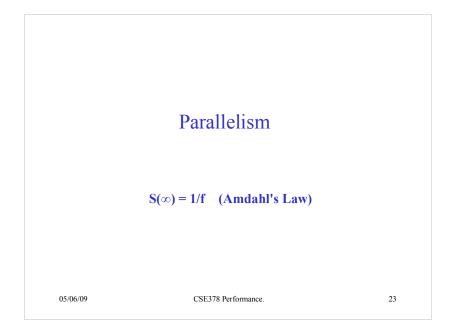


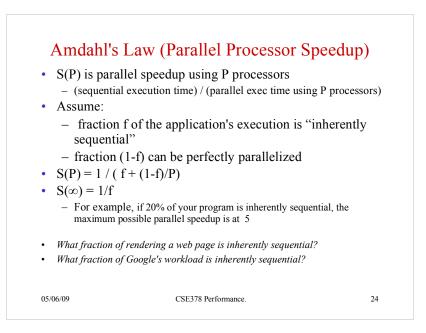


Benchmark	Language	Application Area	Brief Description				
400.perlbench	С	Programming Language	Derived from Perl V5.8.7. The workload includes SpamAssassin, MHonArc (an email indexer), and specdiff (SPEC's tool that checks benchmark outputs).				
401.bzip2	С	Compression	Julian Seward's bzip2 version 1.0.3, modified to do most work in memory, rather than doing I/O.				
403.gcc	С	C Compiler	Based on gcc Version 3.2, generates code for Opteron.				
429.mcf	с	Combinatorial Optimization	Vehicle scheduling. Uses a network simplex algorithm (which is also used in commercial products) to schedule public transport.				
445.gobmk	с	Artificial Intelligence: Go	Plays the game of Go, a simply described but deeply complex game.				
456.hmmer	С	Search Gene Sequence	Protein sequence analysis using profile hidden Markov models (profile HMMs)				
458.sjeng	С	Artificial Intelligence: chess	A highly-ranked chess program that also plays several chess variants.				
462.libquantum	С	Physics / Quantum Computing	Simulates a quantum computer, running Shor's polynomial-time factorizatio algorithm.				
464.h264ref	С	Video Compression	A reference implementation of H.264/AVC, encodes a videostream using 2 parameter sets. The H.264/AVC standard is expected to replace MPEG2				
471.omnetpp	C++	Discrete Event Simulation	Uses the OMNet++ discrete event simulator to model a large Ethernet campus network.				
473.astar	C++	Path-finding Algorithms	Pathfinding library for 2D maps, including the well known A* algorithm.				
483.xalancbmk	C++	XML Processing	A modified version of Xalan-C++, which transforms XML documents to othe document types.				









		Product	Frequency		(watts)	Volt (volt
	130 nm	Pentium 4	3.4 GHz	1342	89.0	1.525
		(Northwood		SpecInt2K		
	130 nm	Pentium M (Banias)	1.0 GHz	673 SpecInt2K	7.0	1.004 ULV
	90 nm	(Banias) Pentium 4	3.6 GHz	1734	103	1.47
	80 mm	(Prescott)	3.6 GHZ	SpecInt2K	103	1.447
	90 nm	Pentium M	2.0 GHz	1429	21	1.32
		(Dothan)		Specint2K	- ·	
	65 nm	Pentium 4	3.6 GHz	1764	86	1.33
		(Cedarmill)		SpecInt2K		
	65 nm	Core Duo	2.167 GHz		31	1.3
		(Yonah)		SpecInt2K		
	Piod			Power	EPI on nm at 1. volts(nJ)	
	i486	P	erformance .0	Power	nm at 1. volts(nJ) 10	
	i486 Penti	P 1. tium 2.	erformance .0 .0	Power 1.0 2.7	nm at 1. volts(nJ) 10 14	
	i486 Penti Penti	1. tium 2. tium Pro 3.	erformance .0 .0	Power 1.0 2.7 9	nm at 1. volts(nJ) 10 14 24	
	i486 Penti Penti Penti	P tium 2 tium Pro 3 tium 4 6	erformance .0 .0	Power 1.0 2.7 9	nm at 1. volts(nJ) 10 14	
	i486 Penti Penti (Will:	1. ium 2 ium Pro 3. ium 4 6. lamette)	erformance .0 .0 .6 .0	Power 1.0 2.7 9 23	nm at 1. volts(nJ) 10 14 24 38	
	i486 Penti Penti (Will: Penti (Ced	P 1. tium 2 tium Pro 3. tium 4 6. lamette) tium 4 7. darmill)	erformance .0 .0 .6 .0 .9	Power 1.0 2.7 9 23 38	nm at 1. volts (nJ) 10 14 24 38 48	
	i486 Penti Penti (Will: (Ced Penti	P tium 2 tium Pro 3 tium 4 6. lamette) tium 4 7. Jarmill) tium M 5.	erformance .0 .0 .6 .0 .9	Power 1.0 2.7 9 23 38	nm at 1. volts(nJ) 10 14 24 38	
	i486 Penti Penti (Will: Penti (Ced Penti	P tium 2 tium Pro 3 tium 4 6 lamette) tium 4 7. tium 4 7. tium M 5. han)	erformance 0 0 .6 0 9 4	Power 1.0 2.7 9 23 38 7	nm at 1. volts (nJ) 10 14 24 38 48 15	
	i486 Penti Penti (Will: Penti (Ced Penti	P 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	erformance 0 0 .6 0 9 4	Power 1.0 2.7 9 23 38 7	nm at 1. volts (nJ) 10 14 24 38 48	
	i486 Penti Penti (Will: Penti (Ced (Dott	P 11. 11. 11. 11. 11. 11. 11. 11	erformance 0 0 6 0 9 4 7	Power 1.0 2.7 9 23 38 7	nm at 1. volts (nJ) 10 14 24 38 48 15 11	
http://www	i486 Penti Penti (Vill. Penti (<u>Ced</u> Penti (<u>Dott</u> Core (Yon	P 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	erformance 0 0 6 0 9 4 .7 EPI of Intel	Power 1.0 2.7 9 23 38 7 8 Microproces	nm at 1. volts (nJ) 10 14 24 38 48 15 11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
http://www 05/06/09	i486 Penti Penti (Vill. Penti (<u>Ced</u> Penti (<u>Dott</u> Core (Yon	P 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0 0 0 0 0 0 0 0 0 0 9 0 4 0 7 0 EPI of Intel 0 00m/kits/c 0	Power 1.0 2.7 9 23 38 7 8 Microproces	nm at 1. volts (nJ) 10 14 24 38 48 15 11 ssors <i>hdf/epi-l</i>	33

	What Next?	
• We'll loo	k at parallelism	
 First, pip path 	elining – a simple approach to speedin	g up the data
technique	struction level parallelism": more agg es for to allow execution of more than on at a time	
 Both of the ISA 	he above preserve the sequential sema	ntics of the
	re changes the ISA (and makes exploit m the software's problem)	ing