

05/06/09 CSE378 Performance. 1

Performance

CSE 378 Spring 2009

05/06/09 CSE378 Performance. 2

Performance of computer systems

� Many different factors among which:

� Technology

� Raw speed of the circuits (clock, switching time)

� Process technology (how many transistors on a chip, how big the
transistors are)

� Organization

� What type of processor (e.g., RISC vs. CISC)

� What type of memory hierarchy

� What types of I/O devices

� How many processors in the system

� Software

� O.S., compilers, database drivers etc

05/06/09 CSE378 Performance. 3

What are some possible metrics?

� Raw speed (peak performance = clock rate)

� Execution time (or response time): time to execute a program from
beginning to end.

� Need benchmarks for integer dominated programs, scientific, graphical
interfaces, multimedia tasks, desktop apps, utilities etc.

� Throughput (total amount of work in a given time)

� measures utilization of resources (good metric when many users: e.g.,
large data base queries, Web servers)

� Improving (decreasing) execution time will improve (increase)
throughput.

� Most of the time, improving throughput will decrease execution time

Traditional measures:

05/06/09 CSE378 Performance. 4

What are some possible metrics?

� Measures that concern power

� Watts = joules / second

� Energy per instruction = joules / instruction executed

� Why be concerned about power?

� Battery life in portable devices

� Heat dissipation issues

� Server rooms are most constrained by their cooling capacity

� Dense clusters can be constrained by the ability to route enough power
into the installation and/or to the individual processors

Recently:

05/06/09 CSE378 Performance. 5

CPU Execution Time

Execution_time = (#insts executed) * CPI * (time/cycle)

05/06/09 CSE378 Performance. 6

Moore�s Law

Courtesy Intel Corp.

05/06/09 CSE378 Performance. 7

Processor-Memory Performance Gap

10

100

1000

1

89 91 93 95 97 99 01

� x Memory latency decrease (10x over 8 years but densities have increased
100x over the same period)

� o x86 CPU speed (100x over 10 years)

�Memory gap�

�Memory wall�

x x

x
x x

x

o

o

o

o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

05/06/09 CSE378 Performance. 8

Comparing Processors Isn�t Straightforward

� Different architectures have different instruction sets
� Can�t run the same set of (machine) instructions on both

� Even different models in the same architecture may have a
complicated relationship
� Model A�s multiply is 6 times faster than model B�s

� Model A�s add is 3 times faster than model B�s

� Model A�s memory system is 8 times faster than model B�s

� But, we really want to compare performance across
processors�

05/06/09 CSE378 Performance. 9

Comparing Performance

� The �right measure� is execution time
� Take some C program, compile, link and run on both processors

� Measure the time it takes from start to end of the execution

� Notice that this means we are evaluating the compilers as
well as the processors
� Is that reasonable?

� If we�re not careful, we might be measuring other things as
well
� E.g., speed of IO devices

05/06/09 CSE378 Performance. 10

Execution time Metric

� Execution time: inverse of performance

Performance A = 1 / (Execution_time A)

� �Processor A is faster than Processor B�

Execution_time A < Execution_time B

Performance A > Performance B

� Relative performance (a computer is �n times faster� than another one)

Performance A / Performance B =Execution_time B / Execution_time A

05/06/09 CSE378 Performance. 11

Definition of CPU execution time

CPU execution_time = (#cycles) * (time per cycle)

� (#cycles) depends on program, compiler, and input

� (time per cycle) is the inverse of clock rate

� Depends on the processor�s implementation

� Clock rate measured in MHz or GHz

05/06/09 CSE378 Performance. 12

Another form of the equation

CPU execution_time =

(#insts executed) * (cycles / instruction) * (time/cycle)

� (cycles / instruction) is called CPI

� CPI depends on processor�s implementation:

� CPI = 1 �Single cycle�

� CPI > 1 Some instructions require more than one cycle

� CPI < 1 Some form of parallel execution

05/06/09 CSE378 Performance. 13

How to Improve Performance?

CPU execution_time = (#insts executed) * CPI * (time/cycle)

� Reduce (#insts executed) : better compilers

� Reduce (time/cycle) : higher clock rates or better processor
implementations

� Reduce CPI : more internal parallelism in processor
implementation
� Pipelining, Superscalar, multi-threaded, multi-core

05/06/09 CSE378 Performance. 14

Benchmarks

� Benchmark: workload representative of what a system will be used for

� Industry benchmarks

� SPECint and SPECfp industry benchmarks updated every few years,

� Linpack (Lapack), NASA kernel: scientific benchmarks

� TPC-A, TPC-B, TPC-C and TPC-D used for databases and data mining

� Other specialized benchmarks (Olden for list processing, Specweb, SPEC
JVM98 etc�)

� Benchmarks for desktop applications, web applications are not as standard

� Beware! Compilers (command lines) are super optimized for the
benchmarks

05/06/09 CSE378 Performance. 15

05/06/09 CSE378 Performance. 16

How to summarize benchmark performance

� n programs in the benchmark suite. What is the relative
performance �overall�?

� A number of alternatives:

� arithmetic mean of execution times:

� (�exec_timei) / n

� harmonic mean of rates:

� n/ (� 1/ratei)

� geometric mean of rates:

� (� ratei)
1/n

05/06/09 CSE378 Performance. 17

Power

EPI = Joules / instruction = Watts / IPS

05/06/09 CSE378 Performance. 18

Dynamic Power Dissipation

CMOS Inverter

05/06/09 CSE378 Performance. 19

Moore�s Law

Courtesy Intel Corp.

05/06/09 CSE378 Performance. 20

http://www.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf

05/06/09 CSE378 Performance. 22

http://www.sun.com/processors/whitepapers/UST1_pwrsav_v1.0.pdf

05/06/09 CSE378 Performance. 23

Parallelism

S(�) = 1/f (Amdahl's Law)

05/06/09 CSE378 Performance. 24

Amdahl's Law (Parallel Processor Speedup)

� S(P) is parallel speedup using P processors

� (sequential execution time) / (parallel exec time using P processors)

� Assume:

� fraction f of the application's execution is �inherently
sequential�

� fraction (1-f) can be perfectly parallelized

� S(P) = 1 / (f + (1-f)/P)

� S(�) = 1/f

� For example, if 20% of your program is inherently sequential, the
maximum possible parallel speedup is at 5

� What fraction of rendering a web page is inherently sequential?

� What fraction of Google's workload is inherently sequential?

05/06/09 CSE378 Performance. 25

What Next?

� We'll look at parallelism

� First, pipelining � a simple approach to speeding up the data
path

� Then, �instruction level parallelism�: more aggressive
techniques for to allow execution of more than one
instruction at a time

� Both of the above preserve the sequential semantics of the
ISA

� Multi-core changes the ISA (and makes exploiting
parallelism the software's problem...)

