
1

Lecture 4

 Announcements:

— HW1 posted on Saturday morning. We gave a little over a week. We

are going to discuss relevant material over the next two lectures.

— Lab1 posted. But if you start doing it, you will realize we still need to

discuss some basic concepts in class. Do not worry, we are going to

give you enough time.

 Today:

— Finish up control flow

— Strings/pointers

— Functions in MIPS

3

.text

main:

li $a0, 0x1234 ## input = 0x1234

li $t0, 0 ## int count = 0;

li $t1, 0 ## for (int i = 0

main_loop:

bge $t1, 32, main_exit ## exit loop if i >= 32

andi $t2, $a0, 1 ## bit = input & 1

beq $t2, $0, main_skip ## skip if bit == 0

addi $t0, $t0, 1 ## count ++

main_skip:

srl $a0, $a0, 1 ## input = input >> 1

add $t1, $t1, 1 ## i ++

j main_loop

main_exit:

jr $ra

 Let’s write a program to count how many bits are set in a 32-bit word.

Putting it all together.

int count = 0;

for (int i = 0 ; i < 32 ; i ++) {

int bit = input & 1;

if (bit != 0) {

count ++;

}

input = input >> 1;

}

 If there is an else clause, it is the target of the conditional branch

— And the then clause needs a jump over the else clause

// increase the magnitude of v0 by one

if (v0 < 0) bge $v0, $0, E

v0 --; sub $v0, $v0, 1

j L

else

v0 ++; E: add $v0, $v0, 1

v1 = v0; L: move $v1, $v0

— Drawing the control-flow graph can help you out.

4

Translating an if-then-else statements

5

Case/Switch Statement

 Many high-level languages support multi-way branches, e.g.

switch (two_bits) {

case 0: break;

case 1: /* fall through */

case 2: count ++; break;

case 3: count += 2; break;

}

 We could just translate the code to if, thens, and elses:

if ((two_bits == 1) || (two_bits == 2)) {

count ++;

} else if (two_bits == 3) {

count += 2;

}

 This isn’t very efficient if there are many, many cases.

6

Case/Switch Statement

switch (two_bits) {

case 0: break;

case 1: /* fall through */

case 2: count ++; break;

case 3: count += 2; break;

}

 Alternatively, we can:

1. Create an array of jump targets

2. Load the entry indexed by the variable two_bits

3. Jump to that address using the jump register, or jr, instruction

7

Representing strings

 A C-style string is represented by an array of bytes.

— Elements are one-byte ASCII codes for each character.

— A 0 value marks the end of the array.

32 space 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

8

Null-terminated Strings

 For example, “Harry Potter” can be stored as a 13-byte array.

 Since strings can vary in length, we put a 0, or null, at the end of the

string.

— This is called a null-terminated string

 Computing string length

— We’ll look at two ways.

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

9

int foo(char *s) {

int L = 0;

while (*s++) {

++L;

}

return L;

}

What does this C code do?

10

Array Indexing Implementation of strlen

int strlen(char *string) {

int len = 0;

while (string[len] != 0) {

len ++;

}

return len;

}

11

Pointers & Pointer Arithmetic

 Many programmers have a vague understanding of pointers

— Looking at assembly code is useful for their comprehension.

int strlen(char *string) {

int len = 0;

while (string[len] != 0) {

len ++;

}

return len;

}

int strlen(char *string) {

int len = 0;

while (*string != 0) {

string ++;

len ++;

}

return len;

}

12

What is a Pointer?

 A pointer is an address.

 Two pointers that point to the same thing hold the same address

 Dereferencing a pointer means loading from the pointer’s address

 A pointer has a type; the type tells us what kind of load to do

— Use load byte (lb) for char *

— Use load half (lh) for short *

— Use load word (lw) for int *

— Use load single precision floating point (l.s) for float *

 Pointer arithmetic is often used with pointers to arrays

— Incrementing a pointer (i.e., ++) makes it point to the next element

— The amount added to the point depends on the type of pointer

• pointer = pointer + sizeof(pointer’s type)

1 for char *, 4 for int *, 4 for float *, 8 for double *

13

What is really going on here…

int strlen(char *string) {

int len = 0;

while (*string != 0) {

string ++;

len ++;

}

return len;

}

14

Pointers Summary

 Pointers are just addresses!!

— “Pointees” are locations in memory

 Pointer arithmetic updates the address held by the pointer

— “string ++” points to the next element in an array

— Pointers are typed so address is incremented by sizeof(pointee)

14

15

An Example Function: Factorial

int fact(int n) { fact:

li $t0, 1

int i, f = 1; move $t1,$a0 # set i to n

for (i = n; i > 0; i--) loop:

f = f * i; blez $t1,exit # exit if done

return f; mul $t0,$t0,$t1 # build factorial

} addi $t1, $t1,-1 # i--

j loop

exit:

move $v0,$t0

jr $ra

16

Register Correspondences

 $zero $0 Zero

 $at $1 Assembler temp

 $v0-$v1 $2-3 Value (return from function)

 $a0-$a3 $4-7 Argument (to function)

 $t0-$t7 $8-15 Temporaries

 $s0-$s7 $16-23 Saved Temporaries Saved

 $t8-$t9 $24-25 Temporaries

 $k0-$k1 $26-27 Kernel (OS) Registers

 $gp $28 Global Pointer Saved

 $sp $29 Stack Pointer Saved

 $fp $30 Frame Pointer Saved

 $ra $31 Return Address Saved

17

Functions in MIPS

 We’ll talk about the 3 steps in handling function calls:

1. The program’s flow of control must be changed.

2. Arguments and return values are passed back and forth.

3. Local variables can be allocated and destroyed.

 And how they are handled in MIPS:

— New instructions for calling functions.

— Conventions for sharing registers between functions.

— Use of a stack.

18

Control flow in C

 Invoking a function changes the

control flow of a program twice.

1. Calling the function

2. Returning from the function

 In this example the main function

calls fact twice, and fact returns

twice—but to different locations

in main.

 Each time fact is called, the CPU

has to remember the appropriate

return address.

 Notice that main itself is also a

function! It is called by the

operating system when you run

the program.

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

19

Function control flow MIPS

 MIPS uses the jump-and-link instruction jal to call functions.

— The jal saves the return address (the address of the next instruction)

in the dedicated register $ra, before jumping to the function.

— jal is the only MIPS instruction that can access the value of the

program counter, so it can store the return address PC+4 in $ra.

jal Fact

 To transfer control back to the caller, the function just has to jump to

the address that was stored in $ra.

jr $ra

 Let’s now add the jal and jr instructions that are necessary for our

factorial example.

20

Data flow in C

 Functions accept arguments and

produce return values.

 The blue parts of the program

show the actual and formal

arguments of the fact function.

 The purple parts of the code deal

with returning and using a result.

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

21

Data flow in MIPS

 MIPS uses the following conventions for function arguments and results.

— Up to four function arguments can be “passed” by placing them in

argument registers $a0-$a3 before calling the function with jal.

— A function can “return” up to two values by placing them in registers

$v0-$v1, before returning via jr.

 These conventions are not enforced by the hardware or assembler, but

programmers agree to them so functions written by different people can

interface with each other.

 Later we’ll talk about handling additional arguments or return values.

22

 Assembly language is untyped—there is no distinction between integers,

characters, pointers or other kinds of values.

 It is up to you to “type check” your programs. In particular, make sure

your function arguments and return values are used consistently.

 For example, what happens if somebody passes the address of an integer

(instead of the integer itself) to the fact function?

A note about types

23

The big problem so far

 There is a big problem here!

— The main code uses $t1 to store the result of fact(8).

— But $t1 is also used within the fact function!

 The subsequent call to fact(3) will overwrite the value of fact(8) that was

stored in $t1.

24

A: ...
Put B’s args in $a0-$a3
jal B # $ra = A2

A2: ...

B: ...
Put C’s args in $a0-$a3,
erasing B’s args!
jal C # $ra = B2

B2: ...
jr $ra # Where does

this go???

C: ...
jr $ra

Nested functions

 A similar situation happens when

you call a function that then calls

another function.

 Let’s say A calls B, which calls C.

— The arguments for the call to

C would be placed in $a0-$a3,

thus overwriting the original

arguments for B.

— Similarly, jal C overwrites the

return address that was saved

in $ra by the earlier jal B.

25

Spilling registers

 The CPU has a limited number of registers for use by all functions, and

it’s possible that several functions will need the same registers.

 We can keep important registers from being overwritten by a function

call, by saving them before the function executes, and restoring them

after the function completes.

 But there are two important questions.

— Who is responsible for saving registers—the caller or the callee?

— Where exactly are the register contents saved?

26

Who saves the registers?

 Who is responsible for saving important registers across function calls?

— The caller knows which registers are important to it and should be

saved.

— The callee knows exactly which registers it will use and potentially

overwrite.

 However, in the typical “black box” programming approach, the caller

and callee do not know anything about each other’s implementation.

— Different functions may be written by different people or companies.

— A function should be able to interface with any client, and different

implementations of the same function should be substitutable.

 So how can two functions cooperate and share registers when they don’t

know anything about each other?

27

The caller could save the registers…

 One possibility is for the caller to

save any important registers that

it needs before making a function

call, and to restore them after.

 But the caller does not know what

registers are actually written by

the function, so it may save more

registers than necessary.

 In the example on the right, frodo

wants to preserve $a0, $a1, $s0

and $s1 from gollum, but gollum

may not even use those registers.

frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

Save registers
$a0, $a1, $s0, $s1

jal gollum

Restore registers
$a0, $a1, $s0, $s1

add $v0, $a0, $a1
add $v1, $s0, $s1
jr $ra

28

…or the callee could save the registers…

 Another possibility is if the callee

saves and restores any registers it

might overwrite.

 For instance, a gollum function

that uses registers $a0, $a2, $s0

and $s2 could save the original

values first, and restore them

before returning.

 But the callee does not know what

registers are important to the

caller, so again it may save more

registers than necessary.

gollum:
Save registers
$a0 $a2 $s0 $s2

li $a0, 2
li $a2, 7
li $s0, 1
li $s2, 8
...

Restore registers
$a0 $a2 $s0 $s2

jr $ra

29

…or they could work together

 MIPS uses conventions again to split the register spilling chores.

 The caller is responsible for saving and restoring any of the following

caller-saved registers that it cares about.

$t0-$t9 $a0-$a3 $v0-$v1

In other words, the callee may freely modify these registers, under the

assumption that the caller already saved them if necessary.

 The callee is responsible for saving and restoring any of the following

callee-saved registers that it uses. (Remember that $ra is “used” by jal.)

$s0-$s7 $ra

Thus the caller may assume these registers are not changed by the callee.

— $ra is tricky; it is saved by a callee who is also a caller.

 Be especially careful when writing nested functions, which act as both a

caller and a callee!

30

Register spilling example

 This convention ensures that the caller and callee together save all of

the important registers—frodo only needs to save registers $a0 and $a1,

while gollum only has to save registers $s0 and $s2.

frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

Save registers
$a0 and $a1

jal gollum

Restore registers
$a0 and $a1

add $v0, $a0, $a1
add $v1, $s0, $s1
jr $ra

gollum:
Save registers
$s0 and $s2

li $a0, 2
li $a2, 7
li $s0, 1
li $s2, 8
...

Restore registers
$s0 and $s2

jr $ra

31

How to fix factorial

 In the factorial example, main (the caller) should save two registers.

— $t1 must be saved before the second call to fact.

— $ra will be implicitly overwritten by the jal instructions.

 But fact (the callee) does not need to save anything. It only writes to

registers $t0, $t1 and $v0, which should have been saved by the caller.

32

Where are the registers saved?

 Now we know who is responsible for saving which registers, but we still

need to discuss where those registers are saved.

 It would be nice if each function call had its own private memory area.

— This would prevent other function calls from overwriting our saved

registers—otherwise using memory is no better than using registers.

— We could use this private memory for other purposes too, like storing

local variables.

33

Function calls and stacks

 Notice function calls and returns occur in

a stack-like order: the most recently

called function is the first one to return.

1. Someone calls A

2. A calls B

3. B calls C

4. C returns to B

5. B returns to A

6. A returns

 Here, for example, C must return to B

before B can return to A.

A: ...

jal B

A2: ...

jr $ra

B: ...

jal C

B2: ...

jr $ra

C: ...

jr $ra

1

2

3

4

5

6

34

Stacks and function calls

 It’s natural to use a stack for function call storage. A block

of stack space, called a stack frame, can be allocated for

each function call.

— When a function is called, it creates a new frame onto

the stack, which will be used for local storage.

— Before the function returns, it must pop its stack frame,

to restore the stack to its original state.

 The stack frame can be used for several purposes.

— Caller- and callee-save registers can be put in the stack.

— The stack frame can also hold local variables, or extra

arguments and return values.

35

The MIPS stack

 In MIPS machines, part of main memory is

reserved for a stack.

— The stack grows downward in terms of

memory addresses.

— The address of the top element of the

stack is stored (by convention) in the

“stack pointer” register, $sp.

 MIPS does not provide “push” and “pop”

instructions. Instead, they must be done

explicitly by the programmer.

0x7FFFFFFF

0x00000000

$sp

stack

36

Pushing elements

 To push elements onto the stack:

— Move the stack pointer $sp down to

make room for the new data.

— Store the elements into the stack.

 For example, to push registers $t1 and $t2

onto the stack:

sub $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

 An equivalent sequence is:

sw $t1, -4($sp)
sw $t2, -8($sp)
sub $sp, $sp, 8

 Before and after diagrams of the stack are

shown on the right.

word 2

word 1

$t1

$t2$sp

Before

After

word 2

word 1

$sp

37

Accessing and popping elements

 You can access any element in the stack

(not just the top one) if you know where it

is relative to $sp.

 For example, to retrieve the value of $t1:

lw $s0, 4($sp)

 You can pop, or “erase,” elements simply

by adjusting the stack pointer upwards.

 To pop the value of $t2, yielding the stack

shown at the bottom:

addi $sp, $sp, 4

 Note that the popped data is still present

in memory, but data past the stack pointer

is considered invalid.

word 2

word 1

$t1

$t2$sp

word 2

word 1

$t1

$t2

$sp

38

Summary

 Today we focused on implementing function calls in MIPS.

— We call functions using jal, passing arguments in registers $a0-$a3.

— Functions place results in $v0-$v1 and return using jr $ra.

 Managing resources is an important part of function calls.

— To keep important data from being overwritten, registers are saved

according to conventions for caller-save and callee-save registers.

— Each function call uses stack memory for saving registers, storing local

variables and passing extra arguments and return values.

 Assembly programmers must follow many conventions. Nothing prevents a

rogue program from overwriting registers or stack memory used by some

other function.

