
Lecture 12

 HW2 due today at 5pm!

 Today’s lecture:

— What about load followed by use?

— What about branches?

— Crystal ball

1

2

Stalls and flushes

 So far, we have discussed data hazards that can occur in pipelined CPUs if

some instructions depend upon others that are still executing.

— Many hazards can be resolved by forwarding data from the pipeline

registers, instead of waiting for the writeback stage.

— The pipeline continues running at full speed, with one instruction

beginning on every clock cycle.

 Now, we’ll see some real limitations of pipelining.

— Forwarding may not work for data hazards from load instructions.

— Branches affect the instruction fetch for the next clock cycle.

 In both of these cases we may need to slow down, or stall, the pipeline.

3

Data hazard review

 A data hazard arises if one instruction needs data that isn’t ready yet.

— Below, the AND and OR both need to read register $2.

— But $2 isn’t updated by SUB until the fifth clock cycle.

 Dependency arrows that point backwards indicate hazards.

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Clock cycle

1 2 3 4 5 6 7

4

Forwarding

 The desired value ($1 - $3) has actually already been computed—it just

hasn’t been written to the registers yet.

 Forwarding allows other instructions to read ALU results directly from the

pipeline registers, without going through the register file.

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Clock cycle

1 2 3 4 5 6 7

5

What about loads?

 Imagine if the first instruction in the example was LW instead of SUB.

— How does this change the data hazard?

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle

1 2 3 4 5 6

7

Stalling

 The easiest solution is to stall the pipeline.

 We could delay the AND instruction by introducing a one-cycle delay into

the pipeline, sometimes called a bubble.

 Notice that we’re still using forwarding in cycle 5, to get data from the

MEM/WB pipeline register to the ALU.

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle

1 2 3 4 5 6 7

8

Stalling and forwarding

 Without forwarding, we’d have to stall for two cycles to wait for the LW

instruction’s writeback stage.

 In general, you can always stall to avoid hazards—but dependencies are

very common in real code, and stalling often can reduce performance by

a significant amount.

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle

1 2 3 4 5 6 7 8

9

Stalling delays the entire pipeline

 If we delay the second instruction, we’ll have to delay the third one too.

— Why?

DMReg RegIM

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2

Clock cycle

1 2 3 4 5 6 7 8

10

Stalling delays the entire pipeline

 If we delay the second instruction, we’ll have to delay the third one too.

— This is necessary to make forwarding work between AND and OR.

— It also prevents problems such as two instructions trying to write to

the same register in the same cycle.

DMReg RegIM

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2

Clock cycle

1 2 3 4 5 6 7 8

12

 But what about the ALU during cycle 4, the data memory in cycle 5, and

the register file write in cycle 6?

 Those units aren’t used in those cycles because of the stall, so we can set

the EX, MEM and WB control signals to all 0s.

Reg

What about EXE, MEM, WB

DMReg RegIM

RegIM

IM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2 DMReg RegIM

DM Reg

Clock cycle

1 2 3 4 5 6 7 8

13

Stall = Nop conversion

 The effect of a load stall is to insert an empty or nop instruction into the

pipeline

DMReg RegIM

RegIM

IM

lw $2, 20($3)

and -> nop

and $12, $2, $5

or $13, $12, $2
DMReg RegIM

DMReg Reg

Clock cycle

1 2 3 4 5 6 7 8

DM Reg

14

Detecting stalls

 Detecting stall is much like detecting data hazards.

 Recall the format of hazard detection equations:

if (EX/MEM.RegWrite = 1

and EX/MEM.RegisterRd = ID/EX.RegisterRs)

then Bypass Rs from EX/MEM stage latch

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

id
/
e
x

if
/
id

e
x
/
m

e
m

m
e
m

\w
b

id
/
e
x

if
/
id

e
x
/
m

e
m

m
e
m

\w
b

15

Detecting Stalls, cont.

 When should stalls be detected?

Reg

DMReg RegIM

RegIM

lw $2, 20($3)

and $12, $2, $5 DM Reg

id
/
e
x

if
/
id

e
x
/
m

e
m

m
e
m

\w
b

id
/
e
x

if
/
id

e
x
/
m

e
m

m
e
m

\w
b

if
/
id

 What is the stall condition?

if (

)

then stall

17

Adding hazard detection to the CPU

0

1

Addr

Instruction

memory

Instr

Address

Write

data

Data

memory

Read

data
1

0

PC

Extend

ALUSrc
Result

Zero

ALU

Instr [15 - 0]
RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control
M

WB

WB

Rs

0

1

2

0

1

2

Forwarding

Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Hazard
Unit

20

Generalizing Forwarding/Stalling

 What if data memory access was so slow, we wanted to pipeline it over 2

cycles?

 How many bypass inputs would the muxes in EXE have?

 Which instructions in the following require stalling and/or bypassing?

lw r13, 0(r11)

add r7, r8, r9

add r15, r7, r13

Clock cycle

1 2 3 4 5 6

DMRegIM Reg

21

Branches in the original pipelined datapath

Read

address

Instruction

memory

Instruction

[31-0]
Address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

0

MemToReg

4

Shift

left 2

P

C

Add

1

0

PCSrc

Sign

extend

ALUSrc

Result

Zero
ALU

ALUOp

Instr [15 - 0]
RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Add

Instr [15 - 11]

Instr [20 - 16]
0

1

0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control

M

WB

WB

When are they resolved?

22

Branches

 Most of the work for a branch computation is done in the EX stage.

— The branch target address is computed.

— The source registers are compared by the ALU, and the Zero flag is set

or cleared accordingly.

 Thus, the branch decision cannot be made until the end of the EX stage.

— But we need to know which instruction to fetch next, in order to keep

the pipeline running!

— This leads to what’s called a control hazard.

DMReg RegIMbeq $2, $3, Label

? ? ? IM

Clock cycle

1 2 3 4 5 6 7 8

23

Stalling is one solution

 Again, stalling is always one possible solution.

 Here we just stall until cycle 4, after we do make the branch decision.

DMReg RegIMbeq $2, $3, Label

? ? ? DMReg RegIM

Clock cycle

1 2 3 4 5 6 7 8

IM

24

Branch prediction

 Another approach is to guess whether or not the branch is taken.

— In terms of hardware, it’s easier to assume the branch is not taken.

— This way we just increment the PC and continue execution, as for

normal instructions.

 If we’re correct, then there is no problem and the pipeline keeps going at

full speed.

DMReg RegIMbeq $2, $3, Label

next instruction 1

next instruction 2

DMReg RegIM

Clock cycle

1 2 3 4 5 6 7

DMReg RegIM

25

Branch misprediction

 If our guess is wrong, then we would have already started executing two

instructions incorrectly. We’ll have to discard, or flush, those instructions

and begin executing the right ones from the branch target address, Label.

DMReg RegIMbeq $2, $3, Label

next instruction 1

next instruction 2

Label: . . .

RegIM

Clock cycle

1 2 3 4 5 6 7 8

IM

DMReg RegIM

flush

flush

26

Performance gains and losses

 Overall, branch prediction is worth it.

— Mispredicting a branch means that two clock cycles are wasted.

— But if our predictions are even just occasionally correct, then this is

preferable to stalling and wasting two cycles for every branch.

 All modern CPUs use branch prediction.

— Accurate predictions are important for optimal performance.

— Most CPUs predict branches dynamically—statistics are kept at run-

time to determine the likelihood of a branch being taken.

 The pipeline structure also has a big impact on branch prediction.

— A longer pipeline may require more instructions to be flushed for a

misprediction, resulting in more wasted time and lower performance.

— We must also be careful that instructions do not modify registers or

memory before they get flushed.

27

Implementing branches

 We can actually decide the branch a little earlier, in ID instead of EX.

— Our sample instruction set has only a BEQ.

— We can add a small comparison circuit to the ID stage, after the

source registers are read.

 Then we would only need to flush one instruction on a misprediction.

DMReg RegIMbeq $2, $3, Label

next instruction 1

Label: . . .

IM

Clock cycle

1 2 3 4 5 6 7

DMReg RegIM

flush

28

Implementing flushes

 We must flush one instruction (in its IF stage) if the previous instruction is

BEQ and its two source registers are equal.

 We can flush an instruction from the IF stage by replacing it in the IF/ID

pipeline register with a harmless nop instruction.

— MIPS uses sll $0, $0, 0 as the nop instruction.

— This happens to have a binary encoding of all 0s: 0000 0000.

 Flushing introduces a bubble into the pipeline, which represents the one-

cycle delay in taking the branch.

 The IF.Flush control signal shown on the next page implements this idea,

but no details are shown in the diagram.

29

Branching without forwarding and load stalls

0

1

Addr

Instruction

memory

Instr

Address

Write

data

Data

memory

Read

data
1

0

Extend

ALUSrc
Result

Zero

ALU

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control

M

WB

WB

=

Add

Shift

left 2

4

P

C

1

0

PCSrc

IF.Flush

The other

stuff just

won’t fit!

30

Timing

 If no prediction:

IF ID EX MEM WB

IF IF ID EX MEM WB --- lost 1 cycle

 If prediction:

— If Correct

IF ID EX MEM WB

IF ID EX MEM WB -- no cycle lost

— If Misprediction:

IF ID EX MEM WB

IF0 IF1 ID EX MEM WB --- 1 cycle lost

31

Summary

 Three kinds of hazards conspire to make pipelining difficult.

 Structural hazards result from not having enough hardware available to

execute multiple instructions simultaneously.

— These are avoided by adding more functional units (e.g., more adders

or memories) or by redesigning the pipeline stages.

 Data hazards can occur when instructions need to access registers that

haven’t been updated yet.

— Hazards from R-type instructions can be avoided with forwarding.

— Loads can result in a “true” hazard, which must stall the pipeline.

 Control hazards arise when the CPU cannot determine which instruction

to fetch next.

— We can minimize delays by doing branch tests earlier in the pipeline.

— We can also take a chance and predict the branch direction, to make

the most of a bad situation.

