
Lecture 12

 HW2 due today at 5pm!

 Today’s lecture:

— What about load followed by use?

— What about branches?

— Crystal ball
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Stalls and flushes

 So far, we have discussed data hazards that can occur in pipelined CPUs if 

some instructions depend upon others that are still executing. 

— Many hazards can be resolved by forwarding data from the pipeline 

registers, instead of waiting for the writeback stage.

— The pipeline continues running at full speed, with one instruction 

beginning on every clock cycle.

 Now, we’ll see some real limitations of pipelining.

— Forwarding may not work for data hazards from load instructions.

— Branches affect the instruction fetch for the next clock cycle.

 In both of these cases we may need to slow down, or stall, the pipeline.
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Data hazard review

 A data hazard arises if one instruction needs data that isn’t ready yet.

— Below, the AND and OR both need to read register $2.

— But $2 isn’t updated by SUB until the fifth clock cycle.

 Dependency arrows that point backwards indicate hazards.

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Clock cycle

1 2 3 4 5 6 7
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Forwarding

 The desired value ($1 - $3) has actually already been computed—it just 

hasn’t been written to the registers yet.

 Forwarding allows other instructions to read ALU results directly from the 

pipeline registers, without going through the register file.

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Clock cycle

1 2 3 4 5 6 7
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What about loads?

 Imagine if the first instruction in the example was LW instead of SUB.

— How does this change the data hazard? 

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle

1 2 3 4 5 6
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Stalling

 The easiest solution is to stall the pipeline.

 We could delay the AND instruction by introducing a one-cycle delay into 

the pipeline, sometimes called a bubble.

 Notice that we’re still using forwarding in cycle 5, to get data from the 

MEM/WB pipeline register to the ALU.

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle

1 2 3 4 5 6 7
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Stalling and forwarding

 Without forwarding, we’d have to stall for two cycles to wait for the LW 

instruction’s writeback stage.

 In general, you can always stall to avoid hazards—but dependencies are 

very common in real code, and stalling often can reduce performance by 

a significant amount.

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle

1 2 3 4 5 6 7 8
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Stalling delays the entire pipeline

 If we delay the second instruction, we’ll have to delay the third one too.

— Why?  

DMReg RegIM

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2

Clock cycle

1 2 3 4 5 6 7 8
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Stalling delays the entire pipeline

 If we delay the second instruction, we’ll have to delay the third one too.

— This is necessary to make forwarding work between AND and OR.

— It also prevents problems such as two instructions trying to write to 

the same register in the same cycle. 

DMReg RegIM

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2

Clock cycle

1 2 3 4 5 6 7 8
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 But what about the ALU during cycle 4, the data memory in cycle 5, and 

the register file write in cycle 6?

 Those units aren’t used in those cycles because of the stall, so we can set 

the EX, MEM and WB control signals to all 0s.

Reg

What about EXE, MEM, WB

DMReg RegIM

RegIM

IM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2 DMReg RegIM

DM Reg

Clock cycle

1 2 3 4 5 6 7 8
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Stall = Nop conversion 

 The effect of a load stall is to insert an empty or nop instruction into the 

pipeline

DMReg RegIM

RegIM

IM

lw $2, 20($3)

and -> nop

and $12, $2, $5

or $13, $12, $2
DMReg RegIM

DMReg Reg

Clock cycle

1 2 3 4 5 6 7 8

DM Reg
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Detecting stalls

 Detecting stall is much like detecting data hazards.

 Recall the format of hazard detection equations:

if (EX/MEM.RegWrite = 1

and EX/MEM.RegisterRd = ID/EX.RegisterRs)

then Bypass Rs from EX/MEM stage latch
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Detecting Stalls, cont.

 When should stalls be detected?

Reg

DMReg RegIM
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 What is the stall condition?

if (

)

then stall
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Adding hazard detection to the CPU
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Generalizing Forwarding/Stalling

 What if data memory access was so slow, we wanted to pipeline it over 2 

cycles?

 How many bypass inputs would the muxes in EXE have?

 Which instructions in the following require stalling and/or bypassing?

lw r13, 0(r11)

add r7, r8, r9

add r15, r7, r13

Clock cycle                

1 2 3 4 5 6

DMRegIM Reg
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Branches in the original pipelined datapath
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Branches

 Most of the work for a branch computation is done in the EX stage.

— The branch target address is computed.

— The source registers are compared by the ALU, and the Zero flag is set 

or cleared accordingly.

 Thus, the branch decision cannot be made until the end of the EX stage.

— But we need to know which instruction to fetch next, in order to keep 

the pipeline running!

— This leads to what’s called a control hazard.

DMReg RegIMbeq $2, $3, Label

? ? ? IM

Clock cycle

1 2 3 4 5 6 7 8
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Stalling is one solution

 Again, stalling is always one possible solution.

 Here we just stall until cycle 4, after we do make the branch decision.

DMReg RegIMbeq $2, $3, Label

? ? ? DMReg RegIM

Clock cycle

1 2 3 4 5 6 7 8

IM
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Branch prediction

 Another approach is to guess whether or not the branch is taken.

— In terms of hardware, it’s easier to assume the branch is not taken.

— This way we just increment the PC and continue execution, as for 

normal instructions. 

 If we’re correct, then there is no problem and the pipeline keeps going at 

full speed.

DMReg RegIMbeq $2, $3, Label

next instruction 1

next instruction 2

DMReg RegIM

Clock cycle

1 2 3 4 5 6 7

DMReg RegIM
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Branch misprediction

 If our guess is wrong, then we would have already started executing two 

instructions incorrectly. We’ll have to discard, or flush, those instructions 

and begin executing the right ones from the branch target address, Label.

DMReg RegIMbeq $2, $3, Label

next instruction 1

next instruction 2

Label: . . .

RegIM

Clock cycle

1 2 3 4 5 6 7 8

IM

DMReg RegIM

flush

flush
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Performance gains and losses

 Overall, branch prediction is worth it. 

— Mispredicting a branch means that two clock cycles are wasted.

— But if our predictions are even just occasionally correct, then this is 

preferable to stalling and wasting two cycles for every branch.

 All modern CPUs use branch prediction.

— Accurate predictions are important for optimal performance.

— Most CPUs predict branches dynamically—statistics are kept at run-

time to determine the likelihood of a branch being taken.

 The pipeline structure also has a big impact on branch prediction.

— A longer pipeline may require more instructions to be flushed for a 

misprediction, resulting in more wasted time and lower performance.

— We must also be careful that instructions do not modify registers or 

memory before they get flushed. 
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Implementing branches

 We can actually decide the branch a little earlier, in ID instead of EX. 

— Our sample instruction set has only a BEQ.

— We can add a small comparison circuit to the ID stage, after the 

source registers are read.

 Then we would only need to flush one instruction on a misprediction.

DMReg RegIMbeq $2, $3, Label

next instruction 1

Label: . . .

IM

Clock cycle

1 2 3 4 5 6 7

DMReg RegIM

flush
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Implementing flushes

 We must flush one instruction (in its IF stage) if the previous instruction is 

BEQ and its two source registers are equal.

 We can flush an instruction from the IF stage by replacing it in the IF/ID 

pipeline register with a harmless nop instruction.

— MIPS uses sll $0, $0, 0 as the nop instruction.

— This happens to have a binary encoding of all 0s: 0000 .... 0000.

 Flushing introduces a bubble into the pipeline, which represents the one-

cycle delay in taking the branch.

 The IF.Flush control signal shown on the next page implements this idea, 

but no details are shown in the diagram.
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Branching without forwarding and load stalls
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Timing

 If no prediction:

IF    ID   EX   MEM  WB

IF   IF    ID      EX   MEM WB    --- lost 1 cycle

 If prediction:

— If Correct

IF   ID  EX   MEM WB

IF   ID   EX    MEM   WB    -- no cycle lost

— If Misprediction:

IF   ID  EX   MEM  WB

IF0  IF1  ID     EX   MEM  WB   --- 1 cycle lost
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Summary

 Three kinds of hazards conspire to make pipelining difficult.

 Structural hazards result from not having enough hardware available to 

execute multiple instructions simultaneously.

— These are avoided by adding more functional units (e.g., more adders 

or memories) or by redesigning the pipeline stages.

 Data hazards can occur when instructions need to access registers that 

haven’t been updated yet.

— Hazards from R-type instructions can be avoided with forwarding.

— Loads can result in a “true” hazard, which must stall the pipeline.

 Control hazards arise when the CPU cannot determine which instruction 

to fetch next.

— We can minimize delays by doing branch tests earlier in the pipeline.

— We can also take a chance and predict the branch direction, to make 

the most of a bad situation.


