
1

Lecture 16

 Today:

— We can do a lot better than direct mapped!

— Save 10 minutes for midterm questions?

2

Finding the location within the cache

 An equivalent way to find the right location within the cache is to use

arithmetic again.

 We can find the index in two steps, as outlined earlier.

— Do integer division of the address by 2n to find the block address.

— Then mod the block address with 2k to find the index.

 The block offset is just the memory address mod 2n.

 For example, we can find address 13 in a 4-block, 2-byte per block cache.

— The block address is 13 / 2 = 6, so the index is then 6 mod 4 = 2.

— The block offset would be 13 mod 2 = 1.

m-bit Address

k bits(m-k-n) bits
n-bit Block

OffsetTag Index

3

A diagram of a larger example cache

 Here is a cache with 1,024

blocks of 4 bytes each, and

32-bit memory addresses.

0

1

2

3

...

...

1022

1023

Index Tag DataValid

Address (32 bits)

=

Hit

1020

Tag

2 bits

Mux

Data

8 8 8 8

8

4

A larger example cache mapping

 Where would the byte from memory address 6146 be stored in this direct-

mapped 210-block cache with 22-byte blocks?

 6146 in binary is 00...01 1000 0000 00 10.

5

A larger diagram of a larger example cache mapping

10

0

1

2

...

512

...

1022

1023

Index Tag DataValid

Address (32 bits)

=

Hit

1020

Tag

2 bits

Mux

Data

8 8 8

8

0000 0001 1000000000

6

What goes in the rest of that cache block?

 The other three bytes of that cache block come from the same memory

block, whose addresses must all have the same index (1000000000) and

the same tag (00...01).

10

...

512

...

Index Tag DataValid

Address (32 bits)

=

Hit

1020

Tag

Mux

Data

8 8 8 8

8

0000 0001 1000000000

7

 Again, byte i of a memory block is stored into byte i of the corresponding

cache block.

— In our example, memory block 1536 consists of byte addresses 6144 to

6147. So bytes 0-3 of the cache block would contain data from address

6144, 6145, 6146 and 6147 respectively.

— You can also look at the lowest 2 bits of the memory address to find

the block offsets.

Block offset Memory address Decimal

00 00..01 1000000000 00 6144

01 00..01 1000000000 01 6145

10 00..01 1000000000 10 6146

11 00..01 1000000000 11 6147

The rest of that cache block

...

512

...

Index Tag DataValid

8

Disadvantage of direct mapping

 The direct-mapped cache is easy: indices and offsets can be computed

with bit operators or simple arithmetic, because each memory address

belongs in exactly one block.

 But, what happens if a

program uses addresses

2, 6, 2, 6, 2, …?

How do we solve this problem?

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory

Address

10

A fully associative cache

 A fully associative cache permits data to be stored in any cache block,

instead of forcing each memory address into one particular block.

— When data is fetched from memory, it can be placed in any unused

block of the cache.

— This way we’ll never have a conflict between two or more memory

addresses which map to a single cache block.

 In the previous example, we might put memory address 2 in cache block

2, and address 6 in block 3. Then subsequent repeated accesses to 2 and

6 would all be hits instead of misses.

 If all the blocks are already in use, it’s usually best to replace the least

recently used one, assuming that if it hasn’t used it in a while, it won’t

be needed again anytime soon.

11

The price of full associativity

 However, a fully associative cache is expensive to implement.

— Because there is no index field in the address anymore, the entire

address must be used as the tag, increasing the total cache size.

— Data could be anywhere in the cache, so we must check the tag of

every cache block. That’s a lot of comparators!

...

...

...

Index Tag (32 bits) DataValid Address (32 bits)

=

Hit

32

Tag

=

=

Hmm, how do we get the best of both worlds?

12

Set associativity

 An intermediate possibility is a set-associative cache.

— The cache is divided into groups of blocks, called sets.

— Each memory address maps to exactly one set in the cache, but data

may be placed in any block within that set.

 If each set has 2x blocks, the cache is an 2x-way associative cache.

 Here are several possible organizations of an eight-block cache.

0

1

2

3

4

5

6

7

Set

0

1

2

3

Set

0

1

Set

1-way associativity

8 sets, 1 block each
2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

13

Locating a set associative block

 We can determine where a memory address belongs in an associative

cache in a similar way as before.

 If a cache has 2s sets and each block has 2n bytes, the memory address

can be partitioned as follows.

 Our arithmetic computations now compute a set index, to select a set

within the cache instead of an individual block.

Block Offset = Memory Address mod 2n

Block Address = Memory Address / 2n

Set Index = Block Address mod 2s

Address (m bits)

s(m-s-n) n

Tag Index Block

offset

14

Example placement in set-associative caches

 Where would data from memory byte address 6195 be placed, assuming

the eight-block cache designs below, with 16 bytes per block?

 6195 in binary is 00...0110000 011 0011.

 Each block has 16 bytes, so the lowest 4 bits are the block offset.

 For the 1-way cache, the next three bits (011) are the set index.

For the 2-way cache, the next two bits (11) are the set index.

For the 4-way cache, the next one bit (1) is the set index.

 The data may go in any block, shown in green, within the correct set.

0

1

2

3

4

5

6

7

Set

0

1

2

3

Set

0

1

Set

1-way associativity

8 sets, 1 block each

2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

15

Block replacement

 Any empty block in the correct set may be used for storing data.

 If there are no empty blocks, the cache controller will attempt to replace

the least recently used block, just like before.

 For highly associative caches, it’s expensive to keep track of what’s really

the least recently used block, so some approximations are used. We

won’t get into the details.

0

1

2

3

4

5

6

7

Set

0

1

2

3

Set

0

1

Set

1-way associativity

8 sets, 1 block each

2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

16

LRU example

 Assume a fully-associative cache with two blocks, which of the following

memory references miss in the cache.

— assume distinct addresses go to distinct blocks

LRUTags

A

B

A

C

B

A

B

addresses

-- -- 0

0 1

18

Set associative caches are a general idea

 By now you may have noticed the 1-way set associative cache is the same

as a direct-mapped cache.

 Similarly, if a cache has 2k blocks, a 2k-way set associative cache would

be the same as a fully-associative cache.

0

1

2

3

4

5

6

7

Set

0

1

2

3

Set

0

1

Set

1-way

8 sets,

1 block each

2-way

4 sets,

2 blocks each

4-way

2 sets,

4 blocks each

0

Set

8-way

1 set,

8 blocks

direct mapped fully associative

19

2-way set associative cache implementation

0

...

2k

Index Tag DataValid

Address (m bits)

=

Hit

k(m-k-n)

Tag

2-to-1 mux

Data

2n

TagValid Data

2n

2n

=

Index
Block

offset

 How does an implementation of a

2-way cache compare with that of

a fully-associative cache?

 Only two comparators are

needed.

 The cache tags are a little

shorter too.

20

Summary

 Larger block sizes can take advantage of spatial locality by loading data

from not just one address, but also nearby addresses, into the cache.

 Associative caches assign each memory address to a particular set within

the cache, but not to any specific block within that set.

— Set sizes range from 1 (direct-mapped) to 2k (fully associative).

— Larger sets and higher associativity lead to fewer cache conflicts and

lower miss rates, but they also increase the hardware cost.

— In practice, 2-way through 16-way set-associative caches strike a good

balance between lower miss rates and higher costs.

 Next, we’ll talk more about measuring cache performance, and also

discuss the issue of writing data to a cache.

