
1

Thread level parallelism: Multi-Core Processors

 Two (or more) complete processors, fabricated on the same silicon chip

 Execute instructions from two (or more) programs/threads at same time

#1 #2

IBM Power5

2

Multi-Cores are Everywhere

Intel Core Duo in new Macs: 2 x86 processors on same chip

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric

multi-core with 9 cores (1 general-purpose, 8

special purpose SIMD processors)

3

Why Multi-cores Now?

 Number of transistors we can put on a chip growing exponentially…

4

… and performance growing too…

 But power is growing even faster!!

— Power has become limiting factor in current chips

5

What is a Thread?

6

 What happens if we run a program on a multi-core?

void

array_add(int A[], int B[], int C[], int length) {

int i;

for (i = 0 ; i < length ; ++i) {

C[i] = A[i] + B[i];

}

}

As programmers, do we care?

#1 #2

7

What if we want a program to run on both processors?

 We have to explicitly tell the machine exactly how to do this

— This is called parallel programming or concurrent programming

 There are many parallel/concurrent programming models

— We will look at a relatively simple one: fork-join parallelism

— Posix threads and explicit synchronization

8

1.Fork N-1 threads

2.Break work into N pieces (and do it)

3.Join (N-1) threads

void

array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);

int i;

for (i = cpu_num ; i < length ; i += N) {

C[i] = A[i] + B[i];

}

join();

}

Fork/Join Logical Example

How good is this with caches?

9

How does this help performance?

 Parallel speedup measures improvement from parallelization:

time for best serial version

time for version with p processors

 What can we realistically expect?

speedup(p) =

10

 In general, the whole computation is not (easily) parallelizable

Reason #1: Amdahl’s Law

Serial regions

11

 Suppose a program takes 1 unit of time to execute serially

 A fraction of the program, s, is inherently serial (unparallelizable)

 For example, consider a program that, when executing on one processor, spends

10% of its time in a non-parallelizable region. How much faster will this program

run on a 3-processor system?

 What is the maximum speedup from parallelization?

Reason #1: Amdahl’s Law

New Execution

Time
=

1-s
+ s

P

New Execution

Time
=

.9T
+ .1T =

3
Speedup =

12

void

array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);

int i;

for (i = cpu_num ; i < length ; i += N) {

C[i] = A[i] + B[i];

}

join();

}

— Forking and joining is not instantaneous

• Involves communicating between processors

• May involve calls into the operating system

— Depends on the implementation

Reason #2: Overhead

New Execution

Time
=

1-s
+ s + overhead(P)

P

13

Programming Explicit Thread-level Parallelism

 As noted previously, the programmer must specify how to parallelize

 But, want path of least effort

 Division of labor between the Human and the Compiler

— Humans: good at expressing parallelism, bad at bookkeeping

— Compilers: bad at finding parallelism, good at bookkeeping

 Want a way to take serial code and say “Do this in parallel!” without:

— Having to manage the synchronization between processors

— Having to know a priori how many processors the system has

— Deciding exactly which processor does what

— Replicate the private state of each thread

 OpenMP: an industry standard set of compiler extensions

— Works very well for programs with structured parallelism.

14

Performance Optimization

 Until you are an expert, first write a working version of the program

 Then, and only then, begin tuning, first collecting data, and iterate

— Otherwise, you will likely optimize what doesn’t matter

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” -- Sir Tony Hoare

15

Using tools to do instrumentation

 Two GNU tools integrated into the GCC C compiler

 Gprof: The GNU profiler

— Compile with the -pg flag

• This flag causes gcc to keep track of which pieces of source code

correspond to which chunks of object code and links in a profiling

signal handler.

— Run as normal; program requests the operating system to periodically

send it signals; the signal handler records what instruction was
executing when the signal was received in a file called gmon.out

— Display results using gprof command

• Shows how much time is being spent in each function.

• Shows the calling context (the path of function calls) to the hot

spot.

16

Example gprof output

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

81.89 4.16 4.16 37913758 0.00 0.00 cache_access

16.14 4.98 0.82 1 0.82 5.08 sim_main

1.38 5.05 0.07 6254582 0.00 0.00 update_way_list

0.59 5.08 0.03 1428644 0.00 0.00 dl1_access_fn

0.00 5.08 0.00 711226 0.00 0.00 dl2_access_fn

0.00 5.08 0.00 256830 0.00 0.00 yylex

Over 80% of time spent in one function

index % time self children called name

0.82 4.26 1/1 main [2]

[1] 100.0 0.82 4.26 1 sim_main [1]

4.18 0.07 36418454/36484188 cache_access <cycle 1> [4]

0.00 0.01 10/10 sys_syscall [9]

0.00 0.00 2935/2967 mem_translate [16]

0.00 0.00 2794/2824 mem_newpage [18]

Provides calling context (main calls sim_main calls cache_access) of hot spot

17

Using tools for instrumentation (cont.)

 Gprof didn’t give us information on where in the function we were
spending time. (cache_access is a big function; still needle in

haystack)

 Gcov: the GNU coverage tool

— Compile/link with the -fprofile-arcs -ftest-coverage options

• Adds code during compilation to add counters to every control

flow edge (much like our by hand instrumentation) to compute

how frequently each block of code gets executed.

— Run as normal

— For each xyz.c file an xyz.gdna and xyz.gcno file are generated

— Post-process with gcov xyz.c

• Computes execution frequency of each line of code

• Marks with ##### any lines not executed

Useful for making sure that you tested your whole program

18

Example gcov output

14282656: 540: if (cp->hsize) {

#####: 541: int hindex = CACHE_HASH(cp, tag);

-: 542:

#####: 543: for (blk=cp->sets[set].hash[hindex];

-: 544: blk;

-: 545: blk=blk->hash_next)

-: 546: {

#####: 547: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))

#####: 548: goto cache_hit;

-: 549: }

-: 550: } else {

-: 551: /* linear search the way list */

753030193: 552: for (blk=cp->sets[set].way_head;

-: 553: blk;

-: 554: blk=blk->way_next) {

751950759: 555: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))

738747537: 556: goto cache_hit;

-: 557: }

-: 558: }

Loop executed over 50 interations on average (751950759/14282656)

Code never executed

19

 Multi-core is having more than one processor on the same chip.

— Soon most PCs/servers and game consoles will be multi-core

— Results from Moore’s law and power constraint

 Exploiting multi-core requires parallel programming

— Automatically extracting parallelism too hard for compiler, in general.

— But, can have compiler do much of the bookkeeping for us

— OpenMP

 Fork-Join model of parallelism

— At parallel region, fork a bunch of threads, do the work in parallel, and

then join, continuing with just one thread

— Expect a speedup of less than P on P processors

• Amdahl’s Law: speedup limited by serial portion of program

• Overhead: forking and joining are not free

Summary

