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Atomic Operations in Hardware

 Previously, we introduced multi-core parallelism.

— Today we’ll look at instruction support for synchronization.

— And some pitfalls of parallelization.

— And solve a few mysteries.

AMD dual-core Opteron

©2006 Craig Zilles
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A simple piece of code

unsigned counter = 0;

void *do_stuff(void * arg) {

for (int i = 0 ; i < 200000000 ; ++ i) {

counter ++;

}

return arg;

}

How long does this program take? 

How can we make it faster? 

adds one to counter
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A simple piece of code

unsigned counter = 0;

void *do_stuff(void * arg) {

for (int i = 0 ; i < 200000000 ; ++ i) {

counter ++;

}

return arg;

}

How long does this program take? Time for 200000000 iterations

How can we make it faster? Run iterations in parallel

adds one to counter
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unsigned counter = 0;

void *do_stuff(void * arg) {

for (int i = 0 ; i < 200000000 ; ++ i) {

counter ++;

}

return arg;

}

Exploiting a multi-core processor

#1 #2

Split for-loop across

multiple threads running

on separate cores
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How much faster?
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How much faster?

 We’re expecting a speedup of 2

 OK, perhaps a little less because of Amdahl’s Law

— overhead for forking and joining multiple threads

 But its actually slower!! Why??

 Here’s the mental picture that we have – two processors, shared memory

counter

shared variable in memory
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This mental picture is wrong!

 We’ve forgotten about caches!

— The memory may be shared, but each processor has its own L1 cache

— As each processor updates counter, it bounces between L1 caches

Multiple bouncing

slows performance
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The code is not only slow, its WRONG!

 Since the variable counter is shared, we can get a data race

 Increment operation: counter++ MIPS equivalent:

 A data race occurs when data is accessed and manipulated by multiple 

processors, and the outcome depends on the sequence or timing of these 

events.

Sequence 1 Sequence 2

Processor 1 Processor 2 Processor 1 Processor 2
lw   $t0, counter lw   $t0, counter

addi $t0, $t0, 1 lw   $t0, counter

sw   $t0, counter addi $t0, $t0, 1

lw   $t0, counter addi $t0, $t0, 1

addi $t0, $t0, 1 sw   $t0, counter

sw   $t0, counter sw   $t0, counter

counter increases by 2 counter increases by 1 !!

lw   $t0, counter

addi $t0, $t0, 1

sw   $t0, counter
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What is the minimum value at the end of the program?
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Atomic operations

 You can show that if the sequence is particularly nasty, the final value of 
counter may be as little as 2, instead of 200000000.

 To fix this, we must do the load-add-store in a single step

— We call this an atomic operation

— We’re saying: ―Do this, and don’t get interrupted while doing this.‖

 ―Atomic‖ in this context means ―all or nothing‖

— either we succeed in completing the operation with no interruptions

or we fail to even begin the operation (because someone else was 

doing an atomic operation)

— We really mean ―atomic‖ AND ―isolated‖ from other threads.

 x86 provides a ―lock‖ prefix that tells the hardware:

―don’t let anyone read/write the value until I’m done with it‖

— Not the default case (because it is slow!)
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What if we want to generalize beyond increments?

 The lock prefix only works for individual x86 instructions.

 What if we want to execute an arbitrary region of code without 

interference?

— Consider a red-black tree used by multiple threads.
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What if we want to generalize beyond increments?

 The lock prefix only works for individual x86 instructions.

 What if we want to execute an arbitrary region of code without 

interference?

— Consider a red-black tree used by multiple threads.

 Best mainstream solution: Locks

— Implements mutual exclusion

• You can’t have it if I have it, I can’t have it if you have it
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What if we want to generalize beyond increments?

 The lock prefix only works for individual x86 instructions.

 What if we want to execute an arbitrary region of code without 

interference?

— Consider a red-black tree used by multiple threads.

 Best mainstream solution: Locks

— Implement ―mutual exclusion‖ 

• You can’t have it if I have, I can’t have it if you have it

when lock = 0, set lock = 1, continue

lock = 0
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Lock acquire code

High-level version MIPS version

unsigned lock = 0;

while (1) {

if (lock == 0) {

lock = 1;

break;

}

}

 What problem do you see with this?

spin: lw $t0, 0($a0)

bne $t0, 0, spin

li $t1, 1

sw $t1, 0($a0)
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Race condition in lock-acquire

spin: lw $t0, 0($a0)

bne $t0, 0, spin

li $t1, 1

sw $t1, 0($a0)
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Doing “lock acquire” atomically

 Make sure no one gets between load and store

 Common primitive: compare-and-swap (old, new, addr)

— If the value in memory matches ―old‖, write ―new‖ into memory

temp = *addr;

if (temp == old) {

*addr = new;

} else {

old = temp;

}

 x86 calls it CMPXCHG (compare-exchange)

— Use the lock prefix to guarantee it’s atomicity
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Using CAS to implement locks

 Acquiring the lock:

lock_acquire:

li  $t0, 0   # old

li  $t1, 1   # new

cas $t0, $t1, lock

beq $t0, $t1, lock_acquire  # failed, try again

 Releasing the lock:

sw  $t0, lock
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Conclusions

 When parallel threads access the same data, potential for data races

— Even true on uniprocessors due to context switching

 We can prevent data races by enforcing mutual exclusion

— Allowing only one thread to access the data at a time

— For the duration of a critical section

 Mutual exclusion can be enforced by locks

— Programmer allocates a variable to ―protect‖ shared data

— Program must perform: 0 1 transition before data access

— 1 0 transition after   

 Locks can be implemented with atomic operations

— (hardware instructions that enforce mutual exclusion on 1 data item) 

— compare-and-swap

• If address holds ―old‖, replace with ―new‖


