This is closed book, closed notes, closed calculator and closed neighbor.

Name_

Do Not Open The Test Until Told To Do So

0

MIPS Reference Data CORE INSTRUCTION SET

ARITHMETIC CO	RE INS	TRU	CTION SET (2)	OPCODE/
	MNE-		•	FMT / FT/
	MON-	FOR-		FUNCT
NAME	IC	MAT	OPERATION	(Hex)
Branch On FP True	bolt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	belf	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//la
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///16
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	and a set	ED	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	and of a rat	110	{F[ft],F[ft+1]}	11.110-0
FP Compare Single	c.x.s*	FR	FPcond = (F[fs] op F[ft])? 1:0	11/10//y
FP Compare	0.1.4*	БÐ	$FPcond = ({F[fs], F[fs+1]} op$	11/32/m/v
Double	0.000	I K	{F[ft],F[ft+1]})?1:0	
* (x is eq. 1t, c	rle) (op is :	==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd], F[fd+1]} = {F[fs], F[fs+1]}$	11/11//3
Double			{F[ft],F[ft+1]}	
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10/~~/2
FP Multiply	mul.d	FR	${F[fd], F[fd+1]} = {F[fs], F[fs+1]} *$	11/11//2
Double			{F[ft],F[ft+1]}	
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	soh.d	FR	${F[fd], F[fd+1]} = {F[fs], F[fs+1]}$	11/11//1
Double			{F[ft],F[ft+1]}	
Load FP Single	lwcl	1	F[rt]=M[R[rs]+SignExtImm] (2)	31///
Load FP	ldcl	1	$F[rt] \approx M[R[rs] + SignExtImm];$ (2)	35///
Double		~	F[rt+1]=M[R[rs]+SignExtImm+4]	011.00
Move From Hi	mfhi	R	R[rd] = Hi	0///10
Move From Lo	nflo	ĸ	R[rd] = Lo	0//-/12
Move From Control	m£c0	R	R[rd] = CR[rs]	16/0/~~/0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned	multu	R	${Hi,Lo} = R[rs] * R[rt]$ (6)	0//19
Store FP Single	swcl	l	M[R[rs]+SignExtImm] = F[rt] (2)	39///
Store FP	edel	I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double	0.000.5		M[R[rs]+SignExtImm+4] = F[rt+1]	

FLOATING POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fint	ft		immediate	¢
	31 26	25 21	20 16	15		0

ODEDATION

PSEUDO INSTRUCTION SET

IN ABVEC	MINEMONIC	OFERATION
Branch Less Than	blt	if(R[rs] <r[rt]) pc="Label</th"></r[rt])>
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	if(R[rs]<=R[rt]) PC = Label
Branch Greater Than or Equa	jo-g-o	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	11	R[rd] = immediate
Move	move	$R[rd] \approx R[rs]$

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME NUMBER		USE	A CALL?
\$zero	0	The Constant Value 0	N,A,
Sat	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
Sa0-Sa3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$18-\$19	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
Sgp	28	Global Pointer	Yes
Ssp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
Sea	21	Return Address	Yes

Copyright 2005 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design. 3rd ed.

Final Exam – CSE378 Autumn 2009

Snyder

1. [15 points] Assuming a 64 MB *Physical Address Space* 1 GB *Virtual Address Space* 2 KB *Page Size*

answer the following. If you do not have enough information, say "Not Enough Info".

- a) How many **bits** are needed to specify the Page Offset?
- b) How many **bits** are needed to specify the Physical Page Number?
- c) How many **bits** are needed to specify the Virtual Page Number?
- d) How many TLB **entries** (total)?

e) How many Page Table **entries** (total)?

2. [12 points] Assuming a

32-bit addresses (virtual and physical)
1 KB Page size
4 KB, 2-way set-associative, write through cache, LRU replacement
(the cache holds 4 KB total of data, do not count other fields in this count)
64 Byte cache block (line) size
8-entry fully associative TLB

Answer the following. If you do not have enough information, say "Not Enough Info".

a) Number of *bits* needed to specify **byte offset** in the cache line:
b) **Total** number of *blocks* (lines) in the cache:
c) Number of *bits* needed to specify the **index**:

d) Number of *bits* needed to specify the **tag**:

3. [5 points] Engineers will double the size of the cache in Question 2 to 8K because they believe the cache doesn't take advantage of all of the **spatial locality** in programs. Of the quantities describing the cache -32, 1K, [4K], 2, 64, 8, which one (circle it) besides 4K should be doubled to improve the cache's spatial locality characteristics? Say why you chose that quantity:

3. (additional space if needed)

 of the four columns:
 __a___b___c___d__

 a)______
 0

 b)______
 1

 c)______
 3

 d)______
 5

4. [8 points] At right is a schematic diagram of a small direct mapped cache. Name each of the four columns:

5. [8 points] Assuming the cache in Question 4 starts empty and the blocksize is 16B, and that the address 0x07770040 points to the ASCII text Bow down to Washington in the memory, show the cache after a lw of the address 0x07770044

6 7

1-way associativity 2-way associativity 4-way associativity Setsets, 1 block each 4 sets, 2 blocks each Setsets, 4 blocks each

6. [6 points] Assume the above caches (blocksize = 16B) start empty, and the first reference is 0xacdc00a0. Give the hex addresses for a possible reference sequence that produces the configuration shown, where shaded blocks are the only valid blocks:

 1. 0xacdc00a0
 <add extra lines as needed>

 2. ______3. _____3. _____4. _____

7. [9 points] Given the accompanying (portion of) a page table for a computer with the parameters: *Virtual addresses: 32 bits Page Size: 8K bytes PTE Size: 4 bytes*and a (1 level) page table with base address
of 0x0002c000, find the physical address
for the virtual address: 0x0000a642
You MUST show your work.

0x0002c028	10ur	0x53d1e
0x0002c024	0	xxxxxxxxxxx
0x0002c020	10ur	0x12020
0x0002c01c	10urc	0x53d1d
0x0002c018	10ur	0x53d1c
0x0002c014	10urw	0x530c0
0x0002c010	10ur	0x12022
0x0002c00c	10urw	0x12021

VPN:	
------	--

Phy Addr:

8. [8 points] Assuming a fully associative TLB, give the entry resulting from the translation in Question 7. (It might be smart to label the fields as well as filling them in.)

9. [12 points] Write MIPS assembly code to push four words onto the stack and fill them all with 0xdeadbeef. Comment your code.

10. [8 points] We did not study MIPS floating point format, but you know how MIPS integer instructions work, so using the green card (front page) infer the answers to these questions:

a) R-type floating point instructions (FR) are like R-type integer instructions because they all have the same opcode bits, which is ______ in hex.

b) R-type floating point is also like R-type integer instructions because the actual operation is given in by FUNCT bits, so float mul is _____ in hex.

c) The format – single or double precision – is also given in the instruction, e.g. double precision has the ______field with hex value_____.

d) The arrangement of registers differs in R-type floating point compared to R-type integer, so 010001 10000 00000 01000 00100 00010 is the instruction

[**Note:** In your answer use the right opcode (see green card), give registers in decimal (as usual) and for the grader subscript register numbers with "s", "d" or "t"; registers can be listed in give in any order.]

11. [8 points] For the following instructions (and using the pipeline diagram as an aid)

lw	\$v0,	64(\$sp)	IF	ID	ΕX	MEM	WB		_		
and	\$al,	\$al, \$s1	-	IF	ID	ΕX	MEM	WB		_	
or	\$s1,	\$t1, \$t2	2		IF	ID	EX	MEM	WB		
SW	\$t2,	-4(\$sp)		-		IF	ID	ΕX	MEM	WB	
addi	\$a1,	\$al, 1					IF	ID	EX	MEM	WB

answer

- a. which instructions contribute to *filling* the pipeline? Give opcodes: _____
- b. Under normal operation some pipeline stages of some instructions perform no useful operation; circle stages, if any, that are no-ops for the instructions shown.
- c. list the registers, if any, that are involved in data hazard(s)

12. [5 points] The computer from Company I has a CPI of 1.5 on the programs of a benchmark suite, and the (binary compatible) computer from Company A has a CPI of 1.25 on the same suite. If A is coming out with a 2 GHz version, how fast does the Company I machine have to be to match its performance? [No Calculators ... simply specify an equation or other unevaluated expression that answers the question.]

13. [5 points] Use the following "forwarding" diagram for the next 2 questions.

MEM/WB.MemRead == 1

&& EX/MEM.MemWrite == 1

&& EX/MEM.RegisterRs == MEM/WB.RegisterRt

is true. Highlight in color the lines in the figure that implement the necessary forwarding.

[Suggestion for partial credit: Say what forwarding your lines are implementing.]

15. [6 points] Stalls in the pipeline are implemented by not updating the contents of the pipeline register, i.e. the "left side doesn't advance to the right side" of the register. Name the pipeline registers that *must* be stalled for

a) Instruction address TLB miss:	
b) 1w L1 cache miss:	
c) sw L1 + L2 cache miss:	
16. [4 points] The accompanying diagram shows the final design for the PC of our pipelined machine. State the meaning of the three inputs to the MUX (the order is unimportant in your answer):	
a	
b	
c	
Work Space Below	

MIPS	(D MIPS	(2) MIPS			Hexa	ASCII	1	Here	Δ \$r
ncode	funct	funct	Binany	Deci-	deci.	Char.	Deci-	doci.	Cha
31-26)	(5:0)	(5-0)	Dinary	mal	mal	ontar	mal	mol	Cita
T) 207	(J.0) all	(3.0)	00.0000	5 0	anan A	NUU	64	40	acu
1)	01.1	addy gyb f	00 0000	5 0	1	SOF	65	40	- u
	a # 1	subj	00 000	1 1	2	SUL	66	41	D
) 1.51	SEL	aury ator	00 0011	1 2	2	SIA	60	42	0
jac	314	urv <i>a</i>	00 001			EIA	67	4.5	
ang ang	DITA	syrcy	00 0100) 4 1 C	4	ENIO	60	44	- D
olom.	and a	aos,	00 010	1 5	3	ACV	70	43	E E
2 1 10 L	SILV	nov,	00 0110	, ,		DEI	70	40	r
Add	are v	neg,/	00 0111	1 /		DEL		4/	
add to	1		00 1000		Ô	03	72	48	
suutu Jei	J4115		00 1001	1 10	9	11	7.3	49	1
i i (). Li de di se	10042		00 1010	10	a L	LP	74	42	1
sa totta	augen 11		00 1011	11	0	V I	15	40	
treat.	syscart	round.w.	00 1100	1 12	C	E E	70	40	L
11.1	DINGA	czunc.w.	00 1101	1 13	u .	CR	77	40	2V2
		cell.wy	00 1110	14	6	50	76	40	
101	sync	Licor.w.J	00 1111	12	1	51	/9	- 41	<u> </u>
25	MACH 1		01 0000	1 10	10	DEE	80	50	P
<i>2</i>)	acos méla	c	01 0001	1/	11	DC1	01		- 2
	mrio	movz <i>j</i>	01 0010	18	12	DC2	82	52	K
	MEIO	movn./	01 0011	19	13	DC3	8,5	25	
			01 0100	20	1-4	DC4	04	24	1
			01 0101	21	10	IN/AN.	0.5	55	- U V
			01 0110	22	10	ETD	00	50	- V
			01 1007	23		CAN	8/	37	v
	mulau		01 1000	/ 24	10	CAN	88	50	- <u>A</u>
	AGE CE		01 1001	20	19	ENI	09	39	
	419		01 1010	20	18	SUD	90	54	r
··	arvu		01 1011	Z/	10	ESC	91	30	<u> </u>
			01 1100	20	10	15	92	50	1
			01 1101	. 29	10	08	95	20	1
			01 1110	/ 30	1e	KS	94	Se	
			10 0000		EF		95		
	add - 440	cvc.s/	10 0000	1 32	20	Space	90	60	
.n.	aggu	everal	10 0001	23	21	!	97	61	a
. W.L.	suo		10 0010	1 34	22	.12	98	. 62	Ū.
. 45 Tarr	SUDU		10 0011	33	- 23		99	0.5	
.00 No.	anu	CVC.WJ	10 0100	20	24	3	100	64	a
. 13 (1	or		10 0101	. 20	23	70	101	05	e
44 L	NOL		10 0 110	20	20	Å.	102	60	T
<u>.</u>	101		10 0111		27		103	07	g
ч			10 1000	40	28	(104	68	ņ
11	-1-		10 1001	41	29	2	105	09	1
962 1.1	olt		10 1010	42	28		100	6a	ļ
w	sico		10 1011	45	20	·····	107	60	<u> </u>
			10 1100	44	20	•	108	00	1
tur an			10 1101	45	20	-	1109	6d	m
w£ Nobr			10 1110	40	20	;	110	0e	n
aune 1	. (16)	- + /	10 1111	47	- 21	1	111	01	0
a wel	Lye Egen	any f	11.0000	48	30	0	112	70	р
wi. 1 1	uged als	c.ung	11 0001	49	31	1	115	/1	q
w C Z mode	5.1 C.	c.eq./	11 0010	50	22	4	114	12	r
- 4 L	LALU For	c.ueq.	11 0011	31	24	3	115	15	5
del	udų	c.orcj	11 0100	52	24	4	110	74	1
901 4-0		c.ult.	11 0101	33	30	2	117	/3	u
ucz	C06	c.oleJ	11 0110	54	.50	0	118	/6	¥
		c.u.e./	11 0111	22	31		119	11	W
с 		c.stj	11 1000	50	38	8	120	78	Х
wC1		c.ngle/	11 1001	57	39	4	121	/9	У
wcZ		c.seq.	11 1010	58	3a	:	122	7a	Z
		c.sglf	11 1011	59	36		123	7b	1
		c.lt/	11 1100	60	3e	<	124	7c	- <u> </u>
dc1		c.nge <i>f</i>	11 1101	61	3d	-	125	7d	}
dc2		c.lef	11 1110	62	3e	>	126	7e	~
		c.ngt/	11111	63	3f	- ? -	127	7f	DEI
				••••••••••••••••••••••••••••••••••••					

(4) IEEE 754 Symbols nent Fraction O IEEE 754 FLOATING POINT STANDARD Expo Object nent $(-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ 0 0 ± 0 ± Denorm where Single Precision Bias = 127, 0 ±0 I to MAX - 1 anything ± Fl. Pt. Num. Double Precision Bias = 1023. 0 ≠0 MAX ±~ NaN IEEE Single Precision and MAX S.P. MAX = 255, D.P. MAX = 2047 **Double Precision Formats:** S Exponent Fraction 31 30 S Exponent Fraction MEMORY ALLOCATION STACK FRAME Higher Stack \$sp -> 7fff fffches Memory Addresses Argument 6 Argument 5 Sfp ¥ Saved Registers Stack Dynamic Data Sgp-1000 8000_{hex} Grows Static Data Local Variables ¥ 1000 0000_{hex} Text \$sp pc →0040 0000_{hex} Lower Memory Addresses Reserved $\theta_{\rm hex}$ DATA ALIGNMENT Double Word Word Word Half Word Half Word Half Word Half Word Byte Byte Byte Byte Byte Byte Byte Value of three least significant bits of byte address (Big Endian) EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS B Interrupt Exception D Mask Code Pending U F.I Interrupt M LE BD = Branch Delay, UM « User Mode, EL » Exception Level, IE =Interrupt Enable EXCEPTION CODES Num ber Name Num Cause of Exception Name Cause of Exception Int Interrupt (hardware) 9 AdE Address Error Exception 10 L (load or instruction fat-to 10 Int Bp Breakpoint Exception Reserved Instruction 0 4 RI Exception

5	AdES	Address Error Exception (store)	П	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Οv	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

	r	mmr	·····	DD D	·····			
		PRE-		PRE-		PRE-		PRE-
	SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX
	$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10-15	femto-
	$10^6, 2^{20}$	Mega-	10 ¹⁸ , 2 ⁶⁰	Exa-	10-6	micro-	10-18	atto-
	$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10-9	nano-	10-21	zepto-
	$10^{12}, 2^{40}$	Tera-	$10^{24}, 2^{80}$	Yotta-	10-12	pico-	10.24	yocto-
1	he symbol	for each	prefix is ju	st its first	letter, a	except µ	is used	for micro

Copyright 2005 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 3rd ed.

