This is closed book, closed notes, closed calculator and closed neighbor.
Name \qquad

Do Not Open The Test Until Told To Do So

PSEUDO INSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	bet	
Branch Greater Than	bet	If(R[ST) $\mathrm{R}[\mathrm{H}]) \mathrm{PC}=$ Label
Branch Less Than or Equal	U.e	
Bramel Greater Than or Equal	me	IfR(S) -R (tt) $\mathrm{PC}=$ Label
Load mmediate	1.	$\mathrm{R}\{\mathrm{rd}]=$ itmmediate
Move	move	$\mathrm{R}[\mathrm{rd}]=\mathrm{RTs}]$

REGISTER NAME, NUMBER, USE, CALL CONVENTION

Name	NUMBER	USE	$\begin{gathered} \text { MUSERVUAGROES } \\ \text { ACALL? } \end{gathered}$
Sato	0	The Comstant Valae	N,A.
Sat	1	Assembler lumperaty	No:
Sve-8w	$2-3$	Vattes for mactom Readts and Expreasion Evatuation	No
Salosa	4-7	Argmbens	No
S $0-5 \mathrm{~S}$)	\%-3	Temprames	No
5si-597	(6-2,	Saved lmpurates	\%
\$ 8 - 30	24.25	Temporits	N
\$ $60-3 \mathrm{k} \mid$	26-27		No
Sg	28	Clobal lomer	Ys
3sp	29	Stack momer	E
311	30	Pame Pomer	es
\$ra	3	Retum Adiess	Yes

[^0]
Final Exam - CSE378 Autumn 2009

1. [15 points] Assuming a 64 MB Physical Address Space

1 GB Virtual Address Space
2 KB Page Size
answer the following. If you do not have enough information, say "Not Enough Info".
a) How many bits are needed to specify the Page Offset?
b) How many bits are needed to specify the Physical Page Number?
c) How many bits are needed to specify the Virtual Page Number?
d) How many TLB entries (total)?
e) How many Page Table entries (total)?

2. [12 points] Assuming a

32-bit addresses (virtual and physical)
1 KB Page size
4 KB, 2-way set-associative, write through cache, LRU replacement (the cache holds 4 KB total of data, do not count other fields in this count) 64 Byte cache block (line) size
8-entry fully associative TLB
Answer the following. If you do not have enough information, say "Not Enough Info".
a) Number of bits needed to specify byte offset in the cache line: \qquad
b) Total number of blocks (lines) in the cache: \qquad
c) Number of bits needed to specify the index: \qquad
d) Number of bits needed to specify the tag: \qquad
3. [5 points] Engineers will double the size of the cache in Question 2 to 8 K because they believe the cache doesn't take advantage of all of the spatial locality in programs. Of the quantities describing the cache $-32,1 \mathrm{~K},[4 \mathrm{~K}], 2,64,8$, which one (circle it) besides 4 K should be doubled to improve the cache's spatial locality characteristics? Say why you chose that quantity:

3. (additional space if needed)

4. [8 points] At right is a schematic diagram of a small direct mapped cache. Name each
of the four columns:
a) \qquad
b) \qquad
c) \qquad
a

-

0
1
2
3
4
5
6
7

5. [8 points] Assuming the cache in Question 4 starts empty and the blocksize is 16B, and that the address 0×07770040 points to the ASCII text Bow down to Washington in the memory, show the cache after a lw of the address 0x07770044

6. [6 points] Assume the above caches (blocksize $=16 \mathrm{~B}$) start empty, and the first reference is 0xacdc00a0. Give the hex addresses for a possible reference sequence that produces the configuration shown, where shaded blocks are the only valid blocks:

1. Oxacdc00a0 <add extra lines as needed>
2. \qquad 3. \qquad 4. \qquad
3. [9 points] Given the accompanying (portion of) a page table for a computer with the parameters:
Virtual addresses: 32 bits
Page Size: $\mathbf{8 K}$ bytes
PTE Size: 4 bytes
and a (1 level) page table with base address of 0x0002c000, find the physical address for the virtual address: 0x0000a642
You MUST show your work.

0x0002c028	10ur	0x53d1e
0x0002c024	0	xxxxxxxxx
0x0002c020	10ur	0x12020
0x0002c01c	10urc	0x53d1d
0x0002c018	10ur	0x53d1c
0x0002c014	10urw	0x530c0
0x0002c010	10ur	0x12022
0x0002c00c	10urw	0x12021

VPN:

PTE:

Phy Addr:
8. [8 points] Assuming a fully associative TLB, give the entry resulting from the translation in Question 7. (It might be smart to label the fields as well as filling them in.)

9. [12 points] Write MIPS assembly code to push four words onto the stack and fill them all with 0xdeadbeef. Comment your code.
10. [8 points] We did not study MIPS floating point format, but you know how MIPS integer instructions work, so using the green card (front page) infer the answers to these questions:
a) R-type floating point instructions (FR) are like R-type integer instructions because they all have the same opcode bits, which is \qquad in hex.
b) R-type floating point is also like R-type integer instructions because the actual operation is given in by FUNCT bits, so float mul is \qquad in hex.
c) The format - single or double precision - is also given in the instruction, e.g. double precision has the \qquad field with hex value \qquad .
d) The arrangement of registers differs in R-type floating point compared to R-type integer, so 0100011000000000010000010000010 is the instruction
[Note: In your answer use the right opcode (see green card), give registers in decimal (as usual) and for the grader subscript register numbers with " s ", "d" or " t "; registers can be listed in give in any order.]
11. [8 points] For the following instructions (and using the pipeline diagram as an aid)

IW	\$v0,	64(\$sp)	IF	ID	EX	MEM	WB				
and	\$a1,	\$a1, \$s1		IF	ID	EX	MEM	WB			
or	\$s1,	\$t1, \$t2			IF	ID	EX	MEM	WB		
sw	\$t2,	-4(\$sp)				IF	ID	EX	MEM	WB	
addi	\$a1,	\$a1, 1					IF	ID	EX	MEM	WB

answer
a. which instructions contribute to filling the pipeline?

Give opcodes: \qquad
b. Under normal operation some pipeline stages of some instructions perform no useful operation; circle stages, if any, that are no-ops for the instructions shown.
c. list the registers, if any, that are involved in data hazard(s)
12. [5 points] The computer from Company I has a CPI of 1.5 on the programs of a benchmark suite, and the (binary compatible) computer from Company A has a CPI of 1.25 on the same suite. If A is coming out with a 2 GHz version, how fast does the Company I machine have to be to match its performance? [No Calculators ... simply specify an equation or other unevaluated expression that answers the question.]
13. [5 points] Use the following "forwarding" diagram for the next 2 questions.

or

and $\$ 12, \$ 2, \$ 5$

add $\$ 13, \$ 6$, $\$ 2$

a. To implement the instruction sequence in the given pipeline, register 2 must be forwarded. Using an arrow of the form $\longrightarrow \longrightarrow$ show the required forwarding by putting the circle on the source register and putting the arrow point on the target wire.
b. If the machine had no forwarding how many no-op instructions would a compiler have to insert to fix this data reference problem? Circle one:

0	1	2	3	4	5	6	7	8

14. [6 points] The forwarding unit discovers that
```
MEM/WB.MemRead == 1
&& EX/MEM.MemWrite == 1
&& EX/MEM.RegisterRs == MEM/WB.RegisterRt
```

is true. Highlight in color the lines in the figure that implement the necessary forwarding.

[Suggestion for partial credit: Say what forwarding your lines are implementing.]
15. [6 points] Stalls in the pipeline are implemented by not updating the contents of the pipeline register, i.e. the "left side doesn't advance to the right side" of the register. Name the pipeline registers that must be stalled for
a) Instruction address TLB miss: \qquad
b) Iw L1 cache miss: \qquad
c) sw L1 + L2 cache miss: \qquad
16. [4 points] The accompanying diagram shows the final design for the PC of our pipelined machine. State the meaning of the three inputs to the MUX (the order is unimportant in your answer):

a.
b.
c. \qquad
\qquad

Extra Credit [2 points] What is the strangest term in CS?

emprizth 200 by Devier Inc, All rights reserved. From Patterson and Hemessy, Conputer Organization and Design, 3rd ed.

[^0]: Copyight 2005 by Elsevier, Inc. All nghts reserved. From Paterson and Hennessy, Computer Organtanon dha Design, 3 rate

