CSE 378 - Machine Organization & Assembly Language - Spring 2010

HW #4 – Due Wed. June 2nd in lecture or by 5pm online

[image: image1.png]Virtual address

3130292827 ---- -+ 1514 1312111098 -

Virtual page number Page offset

)

292827 15141312111098 -

3210

Physical page number Page offset

Physical address

FIGURE 7.20 Mapping from a virtual to a physical address. The page size is 2> =4 KB, The
number of physical pages allowed in memory is 2'%, since the physical page number has 18 bits in it. Thus,
main memory can have at most 1 GB, whil

the virtual address space is 4 GB.

1. As we saw in class, page tables require fairly large amounts of memory, even when most of the entries are invalid. One way to reduce the memory footprint of page tables is to use a hierarchical page table. This way each process's first-level page table can easily fit in main memory and only necessary lower-level page tables need to be kept in memory. In such a system an address's virtual page number, as described in the figure above, is further divided into two fields: a "page table number" and a "page table offset”. The page table number is used to index the first-level page table which provides an address for a second-level page table. The page table offset is then used to index the second-level page table to retrieve the physical page number which is then concatenated with the page offset to provide the physical address. One way to organize such a system is to have each second-level page table occupy exactly one page of memory. Assuming this design, a 32-bit virtual address space, a 16KB page size and 4 bytes per page table entry:

a. How many bits of the virtual address are used to index the first-level page table

(the page table number)?

b. How many bits of the virtual address are used to index the second-level page table

(the page table offset)?

c. How many first-level page tables can be stored in one page?

2. Virtual Memory System

a. Given the following stream of 32-bit virtual addresses, update the TLB and Page Table shown below. Assume a 4 KB page size, a four-entry fully-associative TLB with true LRU replacement where the least recently used entry is the invalid one. If pages must be brought in from disk, increment to the next highest page number.

Addresses: 4095, 31272, 15789, 15000, 7193, 4096, 8912

TLB

Valid
Tag
Physical Page

1
11
12

1
7
4

1
3
6

0
4
9

Page Table

Valid
Physical page or in Disk

1
5

0
Disk

0
Disk

1
6

1
9

1
11

0
Disk

1
4

0
Disk

0
Disk

1
3

1
12

0
Disk

1
3

1
7

0
Disk

b.
 Repeat the question, but this time assume that pages are 16 KB (instead of 4 KB).

Addresses: 4095, 31272, 15789, 15000, 7193, 4096, 8912

TLB

Valid
Tag
Physical Page

1
11
12

1
7
4

1
3
6

0
4
9

Page Table

Valid
Physical page or in Disk

1
5

0
Disk

0
Disk

1
6

1
9

1
11

0
Disk

1
4

0
Disk

0
Disk

1
3

1
12

0
Disk

1
3

1
7

0
Disk

c. What is an advantage of having a larger page size? What is a disadvantage?

3. Cache Performance

Bo-Lu Screen, a 378 student, was recently challenged to a coding competition by his friend Paige Fault, a computer engineering student at WSU. Each student wrote a function in C to convert an in-memory representation of a color image to grayscale. Whoever's code executed more quickly would be declared winner.

Bo-Lu Screen's code:

unsigned byte[][] convToGray(unsigned byte img[][][], int width, int height,

 unsigned byte grayImg[][]) {

int x, y;

unsigned byte R, G, B;

for (y = 0 ; y < height ; y++) {

for (x = 0 ; x < width ; x++) {

R = img[y][x][0];

G = img[y][x][1];

B = img[y][x][2];

grayImg[y][x] = 0.6*R + 0.3*G + 0.1*B;

}

}

return grayImg;

}

Paige Fault's code:

unsigned byte[][] convToGray(unsigned byte img[][][], int width, int height,

 unsigned byte grayImg[][]) {

int x, y;

unsigned byte R, G, B;

for (x = 0 ; x < width ; x++) {

for (y = 0 ; y < height ; y++) {

R = img[y][x][0];

G = img[y][x][1];

B = img[y][x][2];

grayImg[y][x] = 0.6*R + 0.3*G + 0.1*B;

}

}

return grayImg;

}

Surprisingly, their code barely differs. However, Bo-Lu's code significantly outperformed
Paige's on the same machine. Why did Bo-Lu's code execute faster than Paige's?

4. I/O Design: Given the following two applications 1) A database management system for storing large multimedia files and 2) Starcraft 2 (a computer video game), answer the following questions about hard disk design.

a. Is decreasing the sector size likely to help or hurt the applications? Explain.

b. Would increasing disk rotation speed help or hurt the applications? Explain.

5. I/O Performance: Assume a hard disk has the following specifications:

· An average seek time of 11 ms

· A 7200 RPM rotational speed

· A 30MB/s average transfer rate

· 3 ms of overheads for making a request

a. With a sector size of 1KB, what is the average time to read or write a random sector?

b. With a sector size of 2KB, how many random sectors can be read in one second?

6. Performance: Complete the table below by filling in each cell with “Yes”, “No”, or “Maybe” to specify if improvements to a program, compiler, ISA, processor organization, and processor technology would affect the number of instructions executed, CPI, and clock cycle length. Explain your answers for the shaded cells below the table.

Program
Compiler
ISA
Organization
Technology

of Instructions

Executed

CPI

Clock Cycle

Length

7. Performance 2.0: Our two favorite programs have the following distribution of instructions of type A, B, C, and D, and our current processor has the following CPI for those instructions:

A
B
C
D

Fraction of program 1
20%
15%
55%
10%

Fraction of program 2
30%
30%
25%
15%

CPI
5
4
3
2

a. We have heard there is a new processor that implements Type C instructions blazingly fast – each one now executes in only one cycle. What is the maximum performance improvement we can expect from this new processor for program 1 and program 2?

b. What would our performance improvement be if our original processor ran twice as fast for program 1 and program 2?

8. Virtual vs. Physical

When accessing the cache, indicate whether each of the three fields (Tag, Index and Offset as shown below) should come from the Physical or Virtual address and explain why.

Complete the chart with your answers.

 Address:

Tag
Index
Offset

31

 0

Field
Physical/Virtual
Reason

Tag

Index

Offset

