
1

378: Machine Organization and Assembly Language

Spring 2010

Slides adapted from: UIUC, Luis Ceze, Larry Snyder, Hal Perkins

Luis Ceze

2

 Computer architecture is the study of building computer systems.

 CSE378 is roughly split into three parts.

— The first third discusses instruction set architectures—the bridge

between hardware and software.

— Next, we introduce more advanced processor implementations. The

focus is on pipelining, which is one of the most important ways to

improve performance.

— Finally, we talk about memory systems, I/O, and how to connect it all

together.

What is computer architecture about?

3

Why should you care?

 It is interesting.

— You will learn how a processor actually works!

 It will help you be a better programmer.

— Understanding how your program is translated to assembly code lets

you reason about correctness and performance.

— Demystify the seemingly arbitrary (e.g., bus errors, segmentation faults)

 Many cool jobs require an understanding of computer architecture.

— The cutting edge is often pushing computers to their limits.

— Supercomputing, games, portable devices, etc.

 Computer architecture illustrates many fundamental ideas in computer

science

— Abstraction, caching, and indirection are CS staples

4

CSE 370 vs. CSE 378

 This class expands upon the computer architecture material from the last

few weeks of CSE370, and we rely on many other ideas from CS370.

— Understanding binary, hexadecimal and two’s-complement numbers is

still important.

— Devices like multiplexers, registers and ALUs appear frequently. You

should know what they do, but not necessarily how they work.

— Finite state machines and sequential circuits will appear again.

 We do not spend time with logic design topics like Karnaugh maps,

Boolean algebra, latches and flip-flops.

Y

0 0 1 1

0 0 1 1
X

W
0 1 0 0

0 1 0 0

Z

5

Who we are

 Instructor:

Luis Ceze, luisceze@cs, Office: CSE 576

 Teaching Assistants:

Jacob Nelson nelson@cs

Aaron Miller ajmiller@cs

 Communications

• course webpage:
http://www.cs.washington.edu/education/courses/378/10sp/

• discussion board

• mailing list (mostly for announcements from course staff)

http://www.cs.washington.edu/education/courses/378/10wi/

6

Who is Luis?

PhD in architecture,

multiprocessors, parallelism,

compilers.

7

Who are you?

 59 students (wow!)

 Who has written programs in assembly before?

 Anyone designed HW before?

 Written a threaded program before?

8

Administriva – The Course

The textbook provides the most comprehensive coverage
(it’s a beautiful textbook, easy to read & use)

• Computer Organization and Design, Patterson and Hennessy, 4th
Edition

Lectures will present course material

Sections, you signed up for one; here’s how they work

 We have CSE 003 Lab (2:30-5:30) for ―lab work‖

 We’ll use another room (tba) for ―classroom work‖ as
needed

 Use lab time wisely, because they won’t usually be
around at other times

 Don’t expect to finish lab projects during your official
lab time – start immediately and plan on outside time

TAKE NOTES

Administrivia – The Grading

Grading
• Lab assignments: 25%

• Homeworks: 15%

• Midterm: 20%

• Final: 35%

• Participation: 5%

Midterm: May 5, in class

Final: Trying to change. More later.

9

10

Instruction set architectures

 Interface between hardware and software

— abstraction: hide HW complexity from the software through a set of

simple operations and devices

add, mul, and, lw, ...

Software

Hardware

ISA

11

MIPS

 In this class, we’ll use the MIPS instruction set architecture (ISA) to

illustrate concepts in assembly language and machine organization

— Of course, the concepts are not MIPS-specific

— MIPS is just convenient because it is real, yet simple (unlike x86)

 The MIPS ISA is still used in many places today. Primarily in embedded

systems, like:

— Various routers from Cisco

— Game machines like the Nintendo 64 and Sony Playstation 2

http://www.cisco.com/
http://www.nintendo.com/systems/n64/n64_overview.jsp
http://www.us.playstation.com/
http://www.nintendo.com/systems/n64/n64_overview.jsp
http://www.us.playstation.com/

12

From C to Machine Language

a = b + c;

add $16, $17, $18

Compiler

Assembler

01010111010101101...

High-level

language (C)

Assembly

Language

(MIPS)

Binary

Machine

Language

(MIPS)

13

What you will need to learn soon

 You must become ―fluent‖ in MIPS assembly:

— Translate from C to MIPS and MIPS to C

 Example problem: Write a recursive function

Here is a function pow that takes two arguments (n and m, both 32-bit
numbers) and returns nm (i.e., n raised to the mth power).

int

pow(int n, int m) {

if (m == 1)

return n;

return n * pow(n, m-1);

}

Translate this into a MIPS assembly language function.

14

Instruction Execution Engines

Computers are instruction execution engines that endlessly run the

fetch/execute cycle

This course explains in detail this logical process and how it is

implemented in hardware

Instruction Fetch

Instruction Decode

Operand Fetch

Instruction Execute

Result Return

15

MIPS: register-to-register, three address

 MIPS is a register-to-register, or load/store, architecture.

— The destination and sources must all be registers.

— Special instructions, which we’ll see soon, are needed to access main

memory.

 MIPS uses three-address instructions for data manipulation.

— Each ALU instruction contains a destination and two sources.

— For example, an addition instruction (a = b + c) has the form:

add a, b, c

operation

destination sources

operands

16

MIPS register file

 MIPS processors have 32 registers, each of which holds a 32-bit value.

— Register addresses are 5 bits long.

— The data inputs and outputs are 32-bits wide.

 More registers might seem better, but there is a limit to the goodness.

— It’s more expensive, because of both the registers themselves as well

as the decoders and muxes needed to select individual registers.

— Instruction lengths may be affected, as we’ll see in the future.

D data

Write

D address

A address B address

A data B data

32 × 32 Register File

55

5

32

32 32

17

MIPS register names

 MIPS register names begin with a $. There are two naming conventions:

— By number:

$0 $1 $2 … $31

— By (mostly) two-character names, such as:

$a0-$a3 $s0-$s7 $t0-$t9 $sp $ra

 Not all of the registers are equivalent:

— E.g., register $0 or $zero always contains the value 0

(go ahead, try to change it)

 Other registers have special uses, by convention:

— E.g., register $sp is used to hold the ―stack pointer‖

 You have to be a little careful in picking registers for your programs.

—More about this later

18

Basic arithmetic and logic operations

 The basic integer arithmetic operations include the following:

add sub mul div

 And here are a few logical operations:

and or xor

 Remember that these all require three register operands; for example:

add $t0, $t1, $t2 # $t0 = $t1 + $t2

mul $s1, $s1, $a0 # $s1 = $s1 x $a0

19

 More complex arithmetic expressions may require multiple operations at

the instruction set level.

t0 = (t1 + t2) × (t3 - t4)

add $t0, $t1, $t2 # $t0 contains $t1 + $t2

sub $s0, $t3, $t4 # Temporary value $s0 = $t3 - $t4

mul $t0, $t0, $s0 # $t0 contains the final product

 Temporary registers may be necessary, since each MIPS instructions can

access only two source registers and one destination.

— In this example, we could re-use $t3 instead of introducing $s0.

— But be careful not to modify registers that are needed again later.

Larger expressions

20

Immediate operands

 The ALU instructions we’ve seen so far expect register operands. How do

you get data into registers in the first place?

— Some MIPS instructions allow you to specify a signed constant, or

―immediate‖ value, for the second source instead of a register. For

example, here is the immediate add instruction, addi:

addi $t0, $t1, 4 # $t0 = $t1 + 4

— Immediate operands can be used in conjunction with the $zero register

to write constants into registers:

addi $t0, $0, 4 # $t0 = 4

 MIPS is still considered a load/store architecture, because arithmetic

operands cannot be from arbitrary memory locations. They must either be

registers or constants that are embedded in the instruction.

21

We need more space!

 Registers are fast and convenient, but we have only 32 of them, and each

one is just 32-bits wide.

— That’s not enough to hold data structures like large arrays.

— We also can’t access data elements that are wider than 32 bits.

 We need to add some main memory to the system!

— RAM is cheaper and denser than registers, so we can add lots of it.

— But memory is also significantly slower, so registers should be used

whenever possible.

 In the past, using registers wisely was the programmer’s job.

— For example, C has a keyword ―register‖ to mark commonly-used

variables which should be kept in the register file if possible.

— However, modern compilers do a good job of using registers

intelligently and minimizing RAM accesses.

22

How to Succeed in CSE 378

 Remember the big picture.

What are we trying to accomplish, and why?

 Read the textbook.

It’s clear, well-organized, and well-written. The diagrams can be complex,

but are worth studying. Work through the examples and try some

exercises on your own. Read the ―Real Stuff‖ and ―Historical Perspective‖

sections.

 Talk to each other.

You can learn a lot from other CSE378 students, both by asking and

answering questions. Find some good partners for the homeworks/labs

(but make sure you all understand what’s going on).

 Help us help you.

Come to lectures, sections and office hours. Use the discussion board &

Wiki. Ask lots of questions! Check out the web pages.

