
Lecture 14

 Today’s lecture:

— Another look at performance

1

2

Performance

 Now we’ll discuss issues related to performance:

— Latency/Response Time/Execution Time vs. Throughput

— How do you make a reasonable performance comparison?

— The 3 components of CPU performance

— The 2 laws of performance

3

Why know about performance

 Purchasing Perspective:

— Given a collection of machines, which has the

• Best Performance?

• Lowest Price?

• Best Performance/Price?

 Design Perspective:

— Faced with design options, which has the

• Best Performance Improvement?

• Lowest Cost?

• Best Performance/Cost ?

 Both require

— Basis for comparison

— Metric for evaluation

4

Many possible definitions of performance

 Every computer vendor will select one that makes them look good. How

do you make sense of conflicting claims?

Q: Why do end users need a new performance metric?
A: End users who rely only on megahertz as an indicator for
performance do not have a complete picture of PC processor
performance and may pay the price of missed expectations.

5

Two notions of performance

 Which has higher performance?

— Depends on the metric

• Time to do the task (Execution Time, Latency, Response Time)

• Tasks per unit time (Throughput, Bandwidth)

— Response time and throughput are often in opposition

Plane DC to Paris Speed Passengers Throughput

(pmph)

747 6.5 hours 610 mph 470 286,700

Concorde 3 hours 1350 mph 132 178,200

6

Some Definitions

 Performance is in units of things/unit time

— E.g., Hamburgers/hour

— Bigger is better

 If we are primarily concerned with response time

— Performance(x) = 1

execution_time(x)

 Relative performance: “X is N times faster than Y”

N = Performance(X) = execution_time(Y)

Performance(Y) execution_time(X)

7

Some Examples

 Time of Concorde vs. 747?

 Throughput of Concorde vs. 747?

Plane DC to Paris Speed Passengers Throughput

(pmph)

747 6.5 hours 610 mph 470 286,700

Concorde 3 hours 1350 mph 132 178,200

8

 When comparing systems, need to fix the workload

— Which workload?

Basis of Comparison

Workload Pros Cons

Actual Target

Workload

Representative Very specific

Non-portable

Difficult to run/measure

Full Application

Benchmarks

Portable

Widely used

Realistic

Less representative

Small “Kernel” or

“Synthetic”

Benchmarks

Easy to run

Useful early in design

Easy to “fool”

Microbenchmarks Identify peak capability

and potential bottlenecks

Real application performance

may be much below peak

9

Benchmarking

 Some common benchmarks include:

— Adobe Photoshop for image processing

— BAPCo Sysmark for office applications

— Unreal Tournament 2003 for 3D games

— SPEC2000 for CPU performance

 The best way to see how a system

performs for a variety of programs is to

just show the execution times of all of the

programs.

 Here are execution times for several

different Photoshop 5.5 tasks, from

http://www.tech-report.com

10

Summarizing performance

 Summarizing performance with a single number can be misleading—just

like summarizing four years of school with a single GPA!

 If you must have a single number, you

could sum the execution times.

This example graph displays the total

execution time of the individual tests

from the previous page.

 A similar option is to find the average of

all the execution times.

For example, the 800MHz Pentium III (in

yellow) needed 227.3 seconds to run 21

programs, so its average execution time

is 227.3/21 = 10.82 seconds.

 A weighted sum or average is also possible, and lets you emphasize some

benchmarks more than others.

11

The components of execution time

 Execution time can be divided into two parts.

— User time is spent running the application program itself.

— System time is when the application calls operating system code.

 The distinction between user and system time is not always clear,

especially under different operating systems.

 The Unix time command shows both.

salary.125 > time distill 05-examples.ps

Distilling 05-examples.ps (449,119 bytes)

10.8 seconds (0:11)

449,119 bytes PS => 94,999 bytes PDF (21%)

10.61u 0.98s 0:15.15 76.5%

User time

System time

CPU usage = (User + System) / Total

“Wall clock” time (including other processes)

12

Three Components of CPU Performance

Cycles Per Instruction

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

13

 Instructions executed:

— We are not interested in the static instruction count, or how many

lines of code are in a program.

— Instead we care about the dynamic instruction count, or how many

instructions are actually executed when the program runs.

 There are three lines of code below, but the number of instructions

executed would be 2001.

li $a0, 1000
Ostrich: sub $a0, $a0, 1

bne $a0, $0, Ostrich

Instructions Executed

14

 The average number of clock cycles per instruction, or CPI, is a function

of the machine and program.

— The CPI depends on the actual instructions appearing in the program—

a floating-point intensive application might have a higher CPI than an

integer-based program.

— It also depends on the CPU implementation. For example, a Pentium

can execute the same instructions as an older 80486, but faster.

 Initially we assumed each instruction took one cycle, so we had CPI = 1.

— The CPI can be >1 due to memory stalls and slow instructions.

— The CPI can be <1 on machines that execute more than 1 instruction

per cycle (superscalar).

CPI (Review)

15

 One “cycle” is the minimum time it takes the CPU to do any work.

— The clock cycle time or clock period is just the length of a cycle.

— The clock rate, or frequency, is the reciprocal of the cycle time.

 Generally, a higher frequency is better.

 Some examples illustrate some typical frequencies.

— A 500MHz processor has a cycle time of 2ns.

— A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns (500ps).

Clock cycle time

16

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

 The easiest way to remember this is match up the units:

 Make things faster by making any component smaller!!

 Often easy to reduce one component by increasing another

Execution time, again

Seconds
=

Instructions
*

Clock cycles
*

Seconds

Program Program Instructions Clock cycle

Program Compiler ISA Organization Technology

Instruction

Executed

CPI

Clock Cycle

TIme

17

 Let’s compare the performances two 8086-based processors.

— An 800MHz AMD Duron, with a CPI of 1.2 for an MP3 compressor.

— A 1GHz Pentium III with a CPI of 1.5 for the same program.

 Compatible processors implement identical instruction sets and will use

the same executable files, with the same number of instructions.

 But they implement the ISA differently, which leads to different CPIs.

CPU timeAMD,P = InstructionsP * CPIAMD,P * Cycle timeAMD

=

=

CPU timeP3,P = InstructionsP * CPIP3,P * Cycle timeP3

=

=

Example 1: ISA-compatible processors

18

Example 2: Comparing across ISAs

 Intel’s Itanium (IA-64) ISA is designed facilitate executing multiple

instructions per cycle. If an Itanium processor achieves an average CPI of

.3 (3 instructions per cycle), how much faster is it than a Pentium4

(which uses the x86 ISA) with an average CPI of 1?

a) Itanium is three times faster

b) Itanium is one third as fast

c) Not enough information

19

Improving CPI

 Many processor design techniques we’ll see improve CPI

— Often they only improve CPI for certain types of instructions

 Fi = Fraction of instructions of type i

CPI = CPI F where F = I

i = 1

n

i i i i

Instruction Count

 First Law of Performance:

Make the common case fast

20

Example: CPI improvements

 Base Machine:

 How much faster would the machine be if:

— we added a cache to reduce average load time to 3 cycles?

— we added a branch predictor to reduce branch time by 1 cycle?

— we could do two ALU operations in parallel?

Op Type Freq (fi) Cycles CPIi

ALU 50% 3

Load 20% 5

Store 10% 3

Branch 20% 2

21

 Amdahl’s Law states that optimizations are limited in their effectiveness.

 For example, doubling the speed of floating-point operations sounds like

a great idea. But if only 10% of the program execution time T involves

floating-point code, then the overall performance improves by just 5%.

 What is the maximum speedup from improving floating point?

Amdahl’s Law

Execution

time after

improvement
=

Time affected by improvement
+

Time unaffected

by improvementAmount of improvement

Execution

time after

improvement

=
0.10 T

+ 0.90 T = 0.95 T
2

 Second Law of Performance:

Make the fast case common

22

 Performance is one of the most important criteria in judging systems.

 There are two main measurements of performance.

— Execution time is what we’ll focus on.

— Throughput is important for servers and operating systems.

 Our main performance equation explains how performance depends on

several factors related to both hardware and software.

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

 It can be hard to measure these factors in real life, but this is a useful

guide for comparing systems and designs.

 Amdahl’s Law tell us how much improvement we can expect from specific

enhancements.

 The best benchmarks are real programs, which are more likely to reflect

common instruction mixes.

Summary

