
Lecture 11

Today’s topics:
— More pipelining— More pipelining...

1

Pipeline diagram review

Clock cycle
1 2 3 4 5 6 7 8 9

lw $8, 4($29) IF ID EX MEM WB

sub $2, $4, $5 IF ID EX MEM WB

and $9, $10, $11 IF ID EX MEM WB

or $16, $17, $18 IF ID EX MEM WBor $16, $17, $18 IF ID EX MEM WB

add $13, $14, $0 IF ID EX MEM WB

This diagram shows the execution of an ideal code fragment.
— Each instruction needs a total of five cycles for execution.
— One instruction begins on every clock cycle for the first five cycles— One instruction begins on every clock cycle for the first five cycles.
— One instruction completes on each cycle from that time on.

2

Our examples are too simple

Here is the example instruction sequence used to illustrate pipelining

lw $8, 4($29)
sub $2, $4, $5
and $9, $10, 11 , $, $
or $16, $17, $18
add $13, $14, $0

The instructions in this example are independent.
— Each instruction reads and writes completely different registers.
— Our datapath handles this sequence easily, as we saw last time.p q y,

But most sequences of instructions are not independent!

3

An example with dependencies

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)sw $15, 100($2)

This is not a problem for the single-cycle and multicycle datapaths.
Each instruction is executed completely before the next one

begins.
Thi h i i 2 h h 5 b h This ensures that instructions 2 through 5 above use the new

value of $2 (the sub result), just as we expect.
How would this code sequence fare in our pipelined datapath?

4

Data hazards in the pipeline diagram

Clock cycle
1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WBadd $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

The SUB instruction does not write to register $2 until clock cycle 5. This
causes two data hazards in our current pipelined datapath.
— The AND reads register $2 in cycle 3. Since SUB hasn’t modified the The AND reads register $2 in cycle 3. Since SUB hasn t modified the

register yet, this will be the old value of $2, not the new one.
— Similarly, the OR instruction uses register $2 in cycle 4, again before

it’s actually updated by SUB.

5

it s actually updated by SUB.

Things that are okay

Clock cycle
1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WBadd $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

The ADD instruction is okay, because of the register file design.
— Registers are written at the beginning of a clock cycle.
— The new value will be available by the end of that cycle— The new value will be available by the end of that cycle.

The SW is no problem at all, since it reads $2 after the SUB finishes.

6

Dependency arrows

Clock cycle
1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WBadd $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

Arrows indicate the flow of data between instructions.
— The tails of the arrows show when register $2 is written.
— The heads of the arrows show when $2 is read— The heads of the arrows show when $2 is read.

Any arrow that points backwards in time represents a data hazard in our
basic pipelined datapath. Here, hazards exist between instructions 1 & 2
and 1 & 3

7

and 1 & 3.

A fancier pipeline diagram

Clock cycle
1 2 3 4 5 6 7 8 9

DMReg RegIMsub $2, $1, $3

DMReg RegIMand $12, $2, $5

DMReg RegIMor $13, $6, $2

DMReg RegIMadd $14, $2, $2

DMReg RegIMsw $15, 100($2)

8

A more detailed look at the pipeline

We have to eliminate the hazards, so the AND and OR instructions in our
example will use the correct value for register $2.
Wh i th d t i t ll d d d d?When is the data is actually produced and consumed?
What can we do?

Clock cycle
1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

9

A more detailed look at the pipeline

We have to eliminate the hazards, so the AND and OR instructions in our
example will use the correct value for register $2.
L t’ l k t h th d t i t ll d d d dLet’s look at when the data is actually produced and consumed.
— The SUB instruction produces its result in its EX stage, during cycle 3

in the diagram below.
— The AND and OR need the new value of $2 in their EX stages, during

clock cycles 4-5 here.

Clock cycle
1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

10

Bypassing the register file

The actual result $1 - $3 is computed in clock cycle 3, before it’s needed
in cycles 4 and 5.
If we could somehow bypass the writeback and register read stages when If we could somehow bypass the writeback and register read stages when
needed, then we can eliminate these data hazards.
— Today we’ll focus on hazards involving arithmetic instructions.

Next time we’ll examine the lw instruction— Next time, we ll examine the lw instruction.
Essentially, we need to pass the ALU output from SUB directly to the AND
and OR instructions, without going through the register file.

Clock cycle
1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

11

Where to find the ALU result

The ALU result generated in the EX stage is normally passed through the
pipeline registers to the MEM and WB stages, before it is finally written to
the register file.g
This is an abridged diagram of our pipelined datapath.

IF/ID ID/EX EX/MEM MEM/WB

PC

Instruction
memory Data

memory

ALURegisters

1

0
Rd

Rt
0

11

12

Forwarding

Since the pipeline registers already contain the ALU result, we could just
forward that value to subsequent instructions, to prevent data hazards.
— In clock cycle 4, the AND instruction can get the value $1 - $3 from In clock cycle 4, the AND instruction can get the value $1 $3 from

the EX/MEM pipeline register used by sub.
— Then in cycle 5, the OR can get that same result from the MEM/WB

pipeline register being used by SUB.

Clock cycle
1 2 3 4 5 6 7

pipeline register being used by SUB.

DMReg RegIMsub $2, $1, $3

DMReg RegIMand $12, $2, $5

DMReg RegIMor $13, $6, $2

13

Outline of forwarding hardware

A forwarding unit selects the correct ALU inputs for the EX stage.
— If there is no hazard, the ALU’s operands will come from the register

file, just like before.file, just like before.
— If there is a hazard, the operands will come from either the EX/MEM

or MEM/WB pipeline registers instead.
The ALU sources will be selected by two new multiplexers with control The ALU sources will be selected by two new multiplexers, with control
signals named ForwardA and ForwardB.

DMReg RegIMsub $2, $1, $3

DMReg RegIMand $12, $2, $5

DMReg RegIMor $13, $6, $2

14

Simplified datapath with forwarding muxes

IF/ID ID/EX EX/MEM MEM/WB

PC

0
1
2

ForwardAInstruction
memory

Data
memory

ALURegisters

0
1
2

1

0
Rd

Rt
0

1

ForwardB

1

15

Detecting EX/MEM data hazards

So how can the hardware determine if a hazard exists?

DMR RIM DMReg RegIM
sub $2, $1, $3

DMReg RegIMand $12, $2, $5

16

Detecting EX/MEM data hazards

So how can the hardware determine if a hazard exists?
An EX/MEM hazard occurs between the instruction currently in its EX
t d th i i t ti ifstage and the previous instruction if:
1. The previous instruction will write to the register file, and
2. The destination is one of the ALU source registers in the EX stage.

There is an EX/MEM hazard between the two instructions below.

DMR RIM DMReg RegIM
sub $2, $1, $3

DMReg RegIMand $12, $2, $5

Data in a pipeline register can be referenced using a class-like syntax.
For example, ID/EX.RegisterRt refers to the rt field stored in the ID/EX
pipeline.

17

EX/MEM data hazard equations

The first ALU source comes from the pipeline register when necessary.

if (EX/MEM.RegWrite = 1(g
and EX/MEM.RegisterRd = ID/EX.RegisterRs)

then ForwardA = 2

Th d ALU i i ilThe second ALU source is similar.

if (EX/MEM.RegWrite = 1
and EX/MEM.RegisterRd = ID/EX.RegisterRt)and EX/MEM.RegisterRd ID/EX.RegisterRt)

then ForwardB = 2

DMReg RegIM
sub $2, $1, $3

DMReg RegIMand $12, $2, $5

18

Detecting MEM/WB data hazards

A MEM/WB hazard may occur between an instruction in the EX stage and
the instruction from two cycles ago.
O bl i if i t i d t d t i i One new problem is if a register is updated twice in a row.

add $1, $2, $3
add $1, $1, $4

b $5 $5 $1sub $5, $5, $1

Register $1 is written by both of the previous instructions, but only the
most recent result (from the second ADD) should be forwarded.

DMReg RegIM
add $1, $2, $3

DMReg RegIMadd $1, $1, $4

DMReg RegIMsub $5, $5, $1

19

MEM/WB hazard equations

Here is an equation for detecting and handling MEM/WB hazards for the
first ALU source.

if (MEM/WB.RegWrite = 1
and MEM/WB.RegisterRd = ID/EX.RegisterRs
and (EX/MEM RegisterRd ≠ ID/EX RegisterRs or EX/MEM RegWrite = 0)and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs or EX/MEM.RegWrite = 0)

then ForwardA = 1

The second ALU operand is handled similarly.p y

if (MEM/WB.RegWrite = 1
and MEM/WB.RegisterRd = ID/EX.RegisterRt
and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRt or EX/MEM.RegWrite = 0)

then ForwardB = 1

20

Simplified datapath with forwarding

IF/ID ID/EX EX/MEM MEM/WB

F dA

PC

0
1
2

ForwardA
Instruction

memory

Data
memory

ALURegisters

0
1
2

1

0
Rd

Rt
0

1 EX/MEM RegisterRd

ForwardB

1
Rs

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

ID/EX.
RegisterRt

ID/EX.
RegisterRs

21

The forwarding unit

The forwarding unit has several control signals as inputs.

ID/EX.RegisterRs EX/MEM.RegisterRd MEM/WB.RegisterRd
ID/EX.RegisterRt EX/MEM.RegWrite MEM/WB.RegWrite

(The two RegWrite signals are not shown in the diagram, but they come
f th t l it)from the control unit.)
The fowarding unit outputs are selectors for the ForwardA and ForwardB
multiplexers attached to the ALU. These outputs are generated from the
i t i th ti th i inputs using the equations on the previous pages.
Some new buses route data from pipeline registers to the new muxes.

22

Example

sub $2, $1, $3
and $12, $2, $5
or $13 $6 $2or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

A i h i i i i ll i i b l 100Assume again each register initially contains its number plus 100.
— After the first instruction, $2 should contain -2 (101 - 103).
— The other instructions should all use -2 as one of their operands.

We’ll try to keep the example short.
— Assume no forwarding is needed except for register $2Assume no forwarding is needed except for register $2.
— We’ll skip the first two cycles, since they’re the same as before.

23

Clock cycle 3

EX: sub $2, $1, $3ID: and $12, $2, $5IF: or $13, $6, $2

PC

IF/ID ID/EX EX/MEM MEM/WB

0
1

1022 101
101

Instruction
memory

Data

ALURegisters

2

0
1

105X

5

103 -2

103

0

Data
memory

1

05 (Rt)
0

2X

0

212 (Rd)
0

1
2 (Rs)

Forwarding3

2 2

ID/EX.
RegisterRt

EX/MEM.RegisterRd

MEM/WB.RegisterRdID/EX.
RegisterRs

g
Unit

1

3

24

Clock cycle 4: forwarding $2 from EX/MEM

EX: and $12, $2, $5ID: or $13, $6, $2IF: add $14, $2, $2 MEM: sub $2, $1, $3

PC

IF/ID ID/EX EX/MEM MEM/WB

0
1

1066 102
-2

-2Instruction
memory

Data

ALURegisters

2

0
1

102X

2

105 104

105

2

Data
memory

1

02 (Rt)
0

2X

0

12

5

EX/MEM.RegisterRd
13 (Rd)

0

1
6 (Rs)

Forwarding

12 12

2

ID/EX.
RegisterRt

ID/EX.
RegisterRs

5

MEM/WB.RegisterRd

g
Unit

2

-2

25

Clock cycle 5: forwarding $2 from MEM/WB

EX: or $13, $6, $2ID: add $14, $2, $2IF: sw $15, 100($2) MEM: and $12, $2, $5 WB: sub
$2, $1, $3

PC

IF/ID ID/EX EX/MEM MEM/WB

0
1

-22 106
106

-2

Instruction
memory

Data

ALURegisters

2

0
1

-22

2

-2

102

0
104

Data
memory

1

02 (Rt)
0

2-2

1

13

X

-2

-2

2EX/MEM.RegisterRd
14 (Rd)

0

1
2 (Rs)

Forwarding

12

13 13

2

ID/EX.
RegisterRt

ID/EX.
RegisterRs

g
Unit

6

104

2

2 MEM/WB.RegisterRd

26

-2

Lots of data hazards

The first data hazard occurs during cycle 4.
— The forwarding unit notices that the ALU’s first source register for the

AND is also the destination of the SUB instruction.AND is also the destination of the SUB instruction.
— The correct value is forwarded from the EX/MEM register, overriding

the incorrect old value still in the register file.
A second hazard occurs during clock cycle 5A second hazard occurs during clock cycle 5.
— The ALU’s second source (for OR) is the SUB destination again.
— This time, the value has to be forwarded from the MEM/WB pipeline

i t i t dregister instead.
There are no other hazards involving the SUB instruction.
— During cycle 5, SUB writes its result back into register $2.
— The ADD instruction can read this new value from the register file in

the same cycle.

27

Complete pipelined datapath...so far

ID/EX

EX/MEM

MEM/WBM

WB

Control WB

PC

Read
register 1

Read
data 1

IF/ID EX M WB

0
1

0

Addr

Instruction
memory

Instr

Address

Data

ALUSrc Result

Zero
ALURead

register 2

Write
register

Read
data 2

2

0
1

1

memory

Write
data

memory

Read
data 1

0
Extend

Instr [15 - 0] RegDst

Write
data

Registers

Rt
0

2

Rd
0

1
Rs

Forwarding

EX/MEM.RegisterRd

g
Unit

MEM/WB.RegisterRd

28

What about stores?

Two “easy” cases:
1 2 3 4 5 6

DMReg RegIMadd $1, $2, $3

DMReg RegIMsw $4, 0($1)

1 2 3 4 5 6

DMReg RegIMadd $1, $2, $3

DMReg RegIMsw $1, 0($4)

29

Store Bypassing: Version 1

EX: sw $4, 0($1) MEM: add $1, $2, $3

PC

Read
register 1

Read
data 1

IF/ID ID/EX EX/MEM MEM/WB

0
1

0

Addr

Instruction
memory

Instr

Address

Data

ALUSrc Result

Zero
ALURead

register 2

Write
register

Read
data 2

2

0
1

1

memory

Write
data

memory

Read
data 1

0
Extend

Instr [15 - 0] RegDst

Write
data

Registers

Rt
0

2

Rd
0

1
Rs

Forwarding

EX/MEM.RegisterRd

g
Unit

MEM/WB.RegisterRd

30

Store Bypassing: Version 2

EX: sw $1, 0($4) MEM: add $1, $2, $3

PC

Read
register 1

Read
data 1

IF/ID ID/EX EX/MEM MEM/WB

0
1

0

Addr

Instruction
memory

Instr

Address

Data

ALUSrc Result

Zero
ALURead

register 2

Write
register

Read
data 2

2

0
1

1

memory

Write
data

memory

Read
data 1

0
Extend

Instr [15 - 0] RegDst

Write
data

Registers

Rt
0

2

Rd
0

1
Rs

Forwarding

EX/MEM.RegisterRd

g
Unit

MEM/WB.RegisterRd

31

What about stores?

A harder case:

1 2 3 4 5 6

DMReg RegIMlw $1, 0($2)

1 2 3 4 5 6

DMReg RegIMsw $1, 0($4)

In what cycle is:
— The load value available?
— The store value needed?The store value needed?

What do we have to add to the datapath?

32

Load/Store Bypassing: Extend the Datapath

ForwardC

PC

Read
register 1

Read
data 1

IF/ID ID/EX EX/MEM MEM/WB

0
1

0

1

0

Addr

Instruction
memory

Instr

Address

Data

ALUSrc Result

Zero
ALURead

register 2

Write
register

Read
data 2

2

0
1

1

memory

Write
data

memory

Read
data 1

0
Extend

Instr [15 - 0] RegDst

Write
data

Registers

Rt
0

2

Rd
0

1
Rs

Forwarding

EX/MEM.RegisterRd

Sequence : g
Unit

MEM/WB.RegisterRd

Sequence :
lw $1, 0($2)
sw $1, 0($4)

33

Miscellaneous comments

Each MIPS instruction writes to at most one register.
— This makes the forwarding hardware easier to design, since there is

only one destination register that ever needs to be forwarded.only one destination register that ever needs to be forwarded.
Forwarding is especially important with deep pipelines like the ones in all
current PC processors.
Section 6 4 of the textbook has some additional material not shown hereSection 6.4 of the textbook has some additional material not shown here.
— Their hazard detection equations also ensure that the source register

is not $0, which can never be modified.
Th i l l f f di ith l — There is a more complex example of forwarding, with several cases
covered. Take a look at it!

34

Summary

In real code, most instructions are dependent upon other ones.
— This can lead to data hazards in our original pipelined datapath.
— Instructions can’t write back to the register file soon enough for the — Instructions can t write back to the register file soon enough for the

next two instructions to read.
Forwarding eliminates data hazards involving arithmetic instructions.

Th f di g it d t t h d b i g th d ti ti — The forwarding unit detects hazards by comparing the destination
registers of previous instructions to the source registers of the current
instruction.
H d id d b bbi lt f th i li i t — Hazards are avoided by grabbing results from the pipeline registers
before they are written back to the register file.

Next, we’ll finish up pipelining.
— Forwarding can’t save us in some cases involving lw.
— We still haven’t talked about branches for the pipelined datapath.

35

