
Lecture 21

Interrupts, exceptions

1

A Timely Question.

Most modern operating systems pre-emptively schedule programs.
— If you are simultaneously running two programs A and B, the O/S will

periodically switch between them, as it sees fit.
— Specifically, the O/S will:

• Stop A from running
• Copy A’s register values to memory
• Copy B’s register values from memory• Copy B s register values from memory
• Start B running

H d h O/S A?How does the O/S stop program A?

2

I/O Programming, Interrupts, and Exceptions

Most I/O requests are made by applications or the operating system, and
involve moving data between a peripheral device and main memory.

There are two main ways that programs communicate with devices.
— Memory-mapped I/O
— Isolated I/O

There are also several ways of managing data transfers between devices
and main memory.y
— Programmed I/O
— Interrupt-driven I/O

Direct memory access— Direct memory access
Interrupt-driven I/O motivates a discussion about:
— Interrupts
— Exceptions
— and how to program them…

3

Communicating with devices

Most devices can be considered as
memories, with an “address” for
reading or writingreading or writing.
Many instruction sets often make this
analogy explicit. To transfer data to
or from a particular device the CPUor from a particular device, the CPU
can access special addresses.
Here you can see a video card can be
accessed via addresses 3B0 3BB 3C0accessed via addresses 3B0-3BB, 3C0-
3DF and A0000-BFFFF.
There are two ways these addresses
can be accessedcan be accessed.

4

Memory-mapped I/O

With memory-mapped I/O, one address space is divided
into two parts.

S dd f t h i l l ti
Memory

FFFF

— Some addresses refer to physical memory locations.
— Other addresses actually reference peripherals.

For example, an Apple IIe had a 16-bit address bus which
I/O

C000

D000

could access a whole 64KB of memory.
— Addresses C000-CFFF in hexadecimal were not part of

memory, but were used to access I/O devices.
— All the other addresses did reference main memory.

The I/O addresses are shared by many peripherals. In the
Apple IIe, for instance, C010 is attached to the keyboard Memorypp , , y
while C030 goes to the speaker.
Some devices may need several I/O addresses.

y

0000

5

Programming memory-mapped I/O

Control
Address
Data

Hard disks CD ROM Network DisplayCPU Memory

To send data to a device, the CPU writes to the appropriate I/O address.
The address and data are then transmitted along the bus

Hard disks CD-ROM Network DisplayCPU Memory

The address and data are then transmitted along the bus.
Each device has to monitor the address bus to see if it is the target.
— The Apple IIe main memory ignores any transactions whose address

begins ith bits 1100 (addresses C000 CFFF) begins with bits 1100 (addresses C000-CFFF).
— The speaker only responds when C030 appears on the address bus.

6

Isolated I/O

Another approach is to support separate address
spaces for memory and I/O devices, with special
instructions that access the I/O space

FFFFFFFF

instructions that access the I/O space.
For instance, 8086 machines have a 32-bit address
space.

R l i i lik MOV f RAM— Regular instructions like MOV reference RAM.
— The special instructions IN and OUT access a

separate 64KB I/O address space.

Main
memory

00000000

I/O
devices

00000000

0000FFFF

7

00000000

Comparing memory-mapped and isolated I/O

Memory-mapped I/O with a single address space is nice because the same
instructions that access memory can also access I/O devices.

F l i i MIPS i t ti t th dd — For example, issuing MIPS sw instructions to the proper addresses can
store data to an external device.

With isolated I/O, special instructions are used to access devices.
— This is less flexible for programming.

8

Transferring data with programmed I/O

The second important question is how data is
transferred between a device and memory.
U d d I/O it’ ll t

CPU sends read
request to device

Under programmed I/O, it’s all up to a user
program or the operating system.
— The CPU makes a request and then waits for

h d i b d (
CPU waits

Not ready

the device to become ready (e.g., to move
the disk head).

— Buses are only 32-64 bits wide, so the last
f d f l f

for device

Ready
few steps are repeated for large transfers.

A lot of CPU time is needed for this!
— If the device is slow the CPU might have to

CPU reads word
from device

wait a long time—as we will see, most
devices are slow compared to modern CPUs.

— The CPU is also involved as a middleman for
CPU writes word
to main memory

the actual data transfer.

(This CPU flowchart is based on one from Computer Done?
No

9

Organization and Architecture by William Stallings.)
Yes

Can you hear me now? Can you hear me now?

Continually checking to see if a device is ready
is called polling.
It’ t ti l l ffi i t f th CPU

CPU sends read
request to device

It’s not a particularly efficient use of the CPU.
— The CPU repeatedly asks the device if it’s

ready or not. CPU waits

Not ready

— The processor has to ask often enough to
ensure that it doesn’t miss anything, which
means it can’t do much else while waiting.

for device

Ready
An analogy is waiting for your car to be fixed.
— You could call the mechanic every minute,

but that takes up all your time.
— A better idea is to wait for the mechanic to

call you.

10

Interrupt-driven I/O

Interrupt-driven I/O attacks the problem of the
processor having to wait for a slow device.
I t d f iti th CPU ti ith th

CPU sends read
request to device

Instead of waiting, the CPU continues with other
calculations. The device interrupts the processor
when the data is ready.
Th d f ill h i h

CPU does other stuff

 The data transfer steps are still the same as with
programmed I/O, and still occupy the CPU. CPU receives interrupt

. . .

CPU reads word
from device

CPU writes word
to main memory

(Fl h t b d St lli i)
Done?

No

11

(Flowchart based on Stallings again.)
Yes

Interrupts

Interrupts are external events that require the processor’s attention.
— Peripherals and other I/O devices may need attention.
— Timer interrupts to mark the passage of time.

These situations are not errors.
— They happen normally. y pp y
— All interrupts are recoverable:

• The interrupted program will need to be resumed after the
interrupt is handledinterrupt is handled.

It is the operating system’s responsibility to do the right thing, such as:
— Save the current state.

Fi d d l d h d f h h d di k— Find and load the correct data from the hard disk
— Transfer data to/from the I/O device.

12

Exception handling

Exceptions are typically errors that are detected within the processor.
— The CPU tries to execute an illegal instruction opcode.
— An arithmetic instruction overflows, or attempts to divide by 0.
— The a load or store cannot complete because it is accessing a virtual

address currently on disk
• Virtual Memory!

There are two possible ways of resolving these errors.
— If the error is un-recoverable the operating system kills the programIf the error is un recoverable, the operating system kills the program.
— Less serious problems can often be fixed by the O/S or the program

itself.

13

How interrupts/exceptions are handled

For simplicity exceptions and interrupts are handled the same way.
When an exception/interrupt occurs, we stop execution and transfer

t l t th ti t hi h t “ ti h dl ” control to the operating system, which executes an “exception handler”
to decide how it should be processed.
The exception handler needs to know two things.
— The cause of the exception (e.g., overflow or illegal opcode).
— What instruction was executing when the exception occurred. This

helps the operating system report the error or resume the program.
This is another example of interaction between software and hardware,
as the cause and current instruction must be supplied to the operating
system by the processor.

14

MIPS Interrupt Programming

In order to receive interrupts, the software has to enable them.
— On a MIPS processor, this is done by writing to the Status register.

• Interrupts are enabled by setting bit zero.

11

MIPS has multiple interrupt levels
— Interrupts for different levels can be selectively enabled.
— To receive an interrupt, it’s bit in the interrupt mask (bits 8-15 of the To receive an interrupt, it s bit in the interrupt mask (bits 8 15 of the

Status register) must be set.
• In the Figure, interrupt level 15 is enabled.

15

MIPS Interrupt Programming

When an interrupt occurs, the Cause register indicates which one.
— For an exception, the exception code field holds the exception type.
— For an interrupt, the exception code field is 0000 and bits will be set

for pending interrupts.
• The register below shows a pending interrupt at level 15

1 0 0 0 0

Th i h dl i ll f h i The exception handler is generally part of the operating system.

16

Direct memory access

One final method of data transfer is to introduce a
direct memory access, or DMA, controller.
Th DMA t ll i i l hi h d The DMA controller is a simple processor which does
most of the functions that the CPU would otherwise
have to handle.

Th CPU k h DMA ll f

CPU sends read
request to DMA

unit— The CPU asks the DMA controller to transfer
data between a device and main memory. After
that, the CPU can continue with other tasks.
Th DMA ll i h i h

unit

CPU does other stuff
— The DMA controller issues requests to the right

I/O device, waits, and manages the transfers
between the device and main memory.
O fi i h d h DMA ll i h

CPU receives DMA
interrupt

. . .

— Once finished, the DMA controller interrupts the
CPU.

(Flowchart again.)

17

(g)

Main memory problems

System bus

DMA unit Hard disks NetworkCPU & Memory CD-ROM

As you might guess, there are some complications with DMA.

cache

y g g , p
— Since both the processor and the DMA controller may need to access

main memory, some form of arbitration is required.
— If the DMA unit writes to a memory location that is also contained in If the DMA unit writes to a memory location that is also contained in

the cache, the cache and memory could become inconsistent.

18

