
Final Lecture

A few minutes to wrap up and add some perspective
Reminders
— Final exam is Thursday, March 18, 8:30 am, here.
— Review session Wednesday afternoon, March 17, 4:30, CSE 403

• Bring questionsg q

1

Instant replay

The quarter was split into roughly four parts.
— The 1st quarter covered instruction set architectures—the connection

b t ft d h dbetween software and hardware.
— In the 2nd quarter of the course we discussed processor design. We

focused on pipelining, which is one of the most important ways of
i i fimproving processor performance.

— The 3rd quarter focused on large and fast memory systems (via
caching), virtual memory, and I/O.

— Finally, we briefly discussed performance tuning, including profiling
and exploiting data parallelism via SIMD and Multi-Core processors.

We also introduced many performance metrics to estimate the actual
benefits of all of these fancy designs.

MemoryProcessor

Input/Output

2

Input/Output

Some recurring themes

There were several recurring themes throughout the quarter.
— Instruction set and processor designs are intimately related.
— Parallel processing can often make systems faster.p g y
— Performance and Amdahl’s Law quantifies performance limitations.
— Hierarchical designs combine different parts of a system.

Hardware and software depend on each other— Hardware and software depend on each other.

3

Instruction sets and processor designs

The MIPS instruction set was designed for pipelining.
— All instructions are the same length, to make instruction fetch and

j d b h dd l l ti i ljump and branch address calculations simpler.
— Opcode and operand fields appear in the same place in each of the

three instruction formats, making instruction decoding easier.
— Only relatively simple arithmetic and data transfer instructions are

supported.
These decisions have multiple advantages.
— They lead to shorter pipeline stages and higher clock rates.
— They result in simpler hardware, leaving room for other performance

enhancements like forwarding, branch prediction, and on-die caches.g, p ,

4

Parallel processing

One way to improve performance is to do more processing at once.
There were several examples of this in our CPU designs.
— Multiple functional units can be included in a datapath to let single

instructions execute faster. For example, we can calculate a branch
target while reading the register file.

— Pipelining allows us to overlap the executions of several instructions.
— SIMD performance operations on multiple data items simultaneously.
— Multi-core processors enable thread-level parallel processing.p p p g

Memory and I/O systems also provide many good examples.
— A wider bus can transfer more data per clock cycle.

Memory can be split into banks that are accessed simultaneously — Memory can be split into banks that are accessed simultaneously.
Similar ideas may be applied to hard disks, as with RAID systems.

— A direct memory access (DMA) controller performs I/O operations
while the CPU does compute intensive tasks insteadwhile the CPU does compute-intensive tasks instead.

5

Performance and Amdahl’s Law

First Law of Performance: Make the common case fast!

But, performance is limited by the slowest component of the system.
We’ve seen this in regard to cycle times in our CPU implementations.
— Single-cycle clock times are limited by the slowest instruction.g y y
— Pipelined cycle times depend on the slowest individual stage.

Amdahl’s Law also holds true outside the processor itself.
Slow memory or bad cache designs can hamper overall performance— Slow memory or bad cache designs can hamper overall performance.

— I/O bound workloads depend on the I/O system’s performance.

6

Hierarchical designs

Hierarchies separate fast and slow parts of a system, and minimize the
interference between them.

C h f t i hi h d t f tl d — Caches are fast memories which speed up access to frequently-used
data and reduce traffic to slower main memory. (Registers are even
faster…)
B l b li i l l l ll i hi h b d id h — Buses can also be split into several levels, allowing higher-bandwidth
devices like the CPU, memory and video card to communicate without
affecting or being affected by slower peripherals.

7

Architecture and Software

Computer architecture plays a vital role in many areas of software.
Compilers are critical to achieving good performance.
— They must take full advantage of a CPU’s instruction set.
— Optimizations can reduce stalls and flushes, or arrange code and data

accesses for optimal use of system caches.
Operating systems interact closely with hardware.
— They should take advantage of CPU features like support for virtual

memory and I/O capabilities for device drivers.y p
— The OS handles exceptions and interrupts together with the CPU.

8

Five things that I hope you will remember

Abstraction: the separation of interface from implementation.
— ISA’s specify what the processor does, not how it does it.

Locality:
— Temporal Locality: “if you used it, you’ll use it again” p y y , y g
— Spatial Locality: “if you used it, you’ll use something near it”

Caching: buffering a subset of something nearby for quicker accessCaching: buffering a subset of something nearby, for quicker access
— Typically used to exploit locality.

Indirection: adding a flexible mapping from names to things
— Virtual memory’s page table maps virtual to physical address.

Throughput vs. Latency: (# things/time) vs. (time to do one thing)
— Improving one does not necessitate improving the other.

9

