
378 Survival Guide
Lab tips, Verilog tricks, and other useful info

Aaron Miller

Winter 2010

Some content graciously borrowed from Jacob Nelson

Agenda

 Lab/Section Info

 Lab Overview

 Why care?

 Verilog Tips and Pitfalls

 Verilog <--> Hardware Examples

Lab / Section

 When announced, we’ll have section for the
1st hour of your scheduled lab section.

 Otherwise, lab section == office hours

 TA(s) & SLAs will be available in 003

 Attendance != required

 Use time wisely to get help w/ difficult issues

 So, make sure you’re on the class e-mail
list and check that account!

Lab
 Goal: Build pipelined MIPS processor

capable of running complied C code

 Four Tasks

1.Build single-cycle datapath + create jump &
branch logic

2.Build control logic for single-cycle CPU

3.Add pipeline registers

4.Complete pipeline with forwarding & hazard
detection

 2 weeks to complete each part

 Highly suggest you work in pairs

First Task

 Mostly following instructions and
connecting components in block diagram

 Writing some Verilog for jump & branch
logic

 Test benches are provided, but they're not
100% robust

 Demonstration: write short assembly
program to blink lights on board

The Hardware

The Hardware - Details

 FPGA: Altera Cyclone II EP2C20F484C7N

 18,752 4-input lookup tables

 18.752 1-bit registers (aka flip-flops)

 240 KB of memory (enough to store several
frames of an ASCII-encoded rickroll)

Useful Tools

 Aldec's Active-HDL lets us simulate
Verilog and block diagrams (BDEs)

 Its assembler turns your code into bits and
provides useful console output and waveforms
for debugging

 Altera's Quartus software does 3 things:

i. Translates Verilog to hardware primitives

ii.Arranges hardware primitives on the chip

iii.Programs design to chip

Why Lab Matters
 In 370 you designed a bunch of special-

purpose circuits to fulfill one specific role.

 In 378 you'll design the best-known and one
of the most-useful general-purpose circuits:
the processor!

 Important to understand hardware that your
high-level code runs on and abstractions
between them

 Companies think so too!

 If nothing else, you're required to take this
class to get a degree in CS/CE

Short Verilog Quiz

 What are the two types of logic?

 Combinational & sequential

 Inside an always block, which assignment
operator should you use for combinational
logic (= or <=)? Sequential?

 Combinational: = Sequential: <=

 What's the syntax for declaring an 8-bit-
wide bus named fooBar?

 wire [7:0] fooBar;

Hardware Primitives - Logic
module foo(a, b, f, g);

input wire a, b;
output wire f;
output reg g;

assign f = a & b;
always @ (*) begin

g = a & b;
end

endmodule

Questions:

Are f and g the same?

What does ”always @ (*)” mean?

Hardware Primitives - Register
module foo(clk, a, bar);

input wire a, clk;
wire nextBar;
output reg bar;

always @ (posedge clk) begin
bar <= nextBar ^ a;

end
endmodule

Questions:

What does this represent in hardware?

Why did we use ”always @ (posedge clk)”?

Hardware Primitives - Muxes

assign f = s[1] ? (s[0] ? a : b) : (s[0] ? c : d);

always @ (*) begin
case (s)

2'b00: f = d;
2'b01: f = c;
2'b10: f = b;
2'b'11: f = a;

endcase
end

always @ (*) begin
if (s == 2'b00)

f = d;
else if (s == 2'b01)

f = c;
else if (s == 2'b10)

f = b;
else //s == 2'b11

f = a;
end

HW Primitives – Adders /
Subtractors

assign f = a + b;
assign g = a – b;

wire [8:0] sum;
wire [7:0] a, b;
assign sum = {0, a} + {0, b}; // picks-up carry-out

wire [7:0] foo, bar
wire [7:0] a;
wire [3:0] b;
assign foo = a + {4'b0, b}; // what's different between
assign bar = a + {b, 4'b0}; // foo and bar?

HW Primitives - Comparators

assign isZero = (a == 0);

assign isGreater = (a > b); // is this signed?
assign isLTZ = (a < 0); // is this ever true?

To do signed comparison ALL signals used in the comparison
must be additionally declared as ”signed”

Ex: input wire signed [7:0] foo;

What other way do we know of for checking sign?

Verilog Tips - Constants
 wire [7:0] foo = 127; // synthesis warning! Why?

 Missing number type (decimal, binary, hex)

 Active will assume its decimal if not specified!

 What other ways can we specify this?

 wire [7:0] foo = 8'd127;

 wire [7:0] foo = 8'b1111_1111;

 wire [7:0] foo = 8'hff;

 wire [7:0] foo = 8'hFF;

Verilog Tips - Truncation
wire [7:0] a = 8'hAB;
wire b;
wire [7:0] c;

assign b = a;

assign c = a;

Questions:

What's wrong?

Will you get a synthesis warning?

Verilog Tips – reg vs. wire
wire f;
reg g, h;

assign f = a & b;

always @ (posedge clk)
g <= a & b;

always @ (*)
h = a & b;

Questions:

When do you declare something as a reg?

Are f and g the same? What about f and h?

Verilog Traps – Multiple always
blocks

input wire a, b;
output reg f;

always @ (posedge clk)
if (a) f <= 1'b0;

always @ (posedge clk)
if (b) f <= 1'b1;

Questions:

What happens when a = 1 and b = 1?

How can we fix this?

= vs. <=

 One simple rule:

 If you want sequential logic, use

always @ (posedge clk) with <=

 If you want combinational logic, use

always @ (*) with =

Incomplete Sensitivity Lists
 What is a sensitivity list?

 Examples of problematic lists:

 always @ (a || b)

 always @ (a)

f = a & b

 always

f = a & b;

 Tip: Use always @ (*) for combinational
logic!

Latches!

always @ (posedge clk) begin
if (a == 1)

f <= 1;
else if (a == 2)

f <= 2;
else if (a == 3)

f <= 3;
end

Implicity this adds:
else

f <= f;

But we're okay...

always @ (*) begin
if (a == 1)

f = 1;
else if (a == 2)

f = 2;
else if (a == 3)

f = 3;
end

Implicity this adds:
else

f = f;

This is memory, but in
a non-sequential
circuit!

Displaying Stuff

 $display() is equivalent to C's printf()

 Same format strings

 %d for a decimal

 %h for hex

 Ex: $display(”%d in hex is: %h”, foo, foo);

 For something which is assigned to with the
non-blocking assingment operator (<=) you
may want to use $strobe()

X's

 X's are for undefined values

 Pins that are not connected will be X's.
Often, 32'hxxxxxxf4 indicates that you
forgot to specify the bus's full width
(Active-HDL defaults to 8-bit-wide buse)

 1'b1 & 1'bX ==> 1'bX

 1'b1 + 1'bX ==> 1'bX

Z's

 More than the things you won't be catching
as much of at night, Z's are primarily for
bus sharing.

 You don't need them in 378

 a <= 1'bZ; b <= 1'bZ

 a <= 2'b0; b <= 1'b1;

 a will be 00 and b will be 1 in this case

 Sometimes Z's turn into X's !

 1'b1 & 1'bZ ==> 1'bX

 1'b1 + 1'bZ ==> 1'bX

Initial Values

 Synthesis doesn't always properly initialize
wires/buses

 You can use an initial block but it's better
design to have a reset input and reset logic
to properly initialize things

 Initial block example:

Initial begin
foo = 1'b1;

end

Other

 We use Verilog 2001, your green sheet is in
System Verilog. There are some syntatic
differences:

 Sign extension: foo = {16{bar[15]}, bar}; // S Verilog
foo = {{16{bar[15]}}, bar}; // our Verilog

 Active-HDL uses a default bus width of 8 bits!
Most of the buses in the lab need to be 32 bits
wide!

 Specify in the bus's declaration. Ex: wire [31:0] short;

 Give all of your buses names! This will allevaite
many problems & makes debugging easier!

Verilog <--> HW

Thanks for your attention!

For today: Make sure you can get into 003 and log-in.

Questions?

