
1

378: Machine Organization and Assembly Language
Winter 2011 – The Final Performance!

Slides adapted from: UIUC, Luis Ceze, Larry Snyder, Hal Perkins

Hal Perkins

2

Computer architecture is the study of building computer systems.

CSE378 is roughly split into three parts.
— The first third discusses instruction set architectures—the bridge

between hardware and software.
— Next, we introduce more advanced processor implementations. The

focus is on pipelining, which is one of the most important ways to
improve performance.

— Finally, we talk about memory systems, I/O, and how to connect it all
together.

What is computer architecture about?

3

Why should you care?

It is interesting.
— You will learn how a processor actually works!

It will help you be a better programmer.
— Understanding how your program is translated to assembly code lets

you reason about correctness and performance.
— Demystify the seemingly arbitrary (e.g., bus errors, segmentation faults)

Many cool jobs require an understanding of computer architecture.
— The cutting edge is often pushing computers to their limits.
— Supercomputing, games, portable devices, etc.

Computer architecture illustrates many fundamental ideas in computer
science
— Abstraction, caching, and indirection are CS staples

4

CSE 370 vs. CSE 378

This class expands upon the computer architecture material from the last
few weeks of CSE370, and we rely on many other ideas from CS370.
— Understanding binary, hexadecimal and two’s-complement numbers is

still important.
— Devices like multiplexers, registers and ALUs appear frequently. You

should know what they do, but not necessarily how they work.
— Finite state machines and sequential circuits will appear again.

We do not spend time with logic design topics like Karnaugh maps,
Boolean algebra, latches and flip-flops.

Y

0 0 1 1

0 0 1 1
X

W
0 1 0 0

0 1 0 0

Z

CSE 370/378 vs CSE 351/351

370/378 is “bottom-up” – from gates to logic units to registers, datapath,
control to make up a processor

351/352 is “middle-down” – start with registers, instructions, what the
compiled code does (351), then down to implementation – registers, logic
units, datapath, control (352)

MIPS (378) vs x86 (351)
— Important thing is to learn a first machine at the instruction set level
— You will pick up many others during your career but the basic ideas are

the same
— If we have time at the end of the quarter we’ll take a quick look at x86

5

6

Who we are

Instructor:
Hal Perkins, perkins@cs, Office: CSE 548

Teaching Assistants:
Aaron Miller ajmiller@cs
Steven Lockhart srl7@cs

Communications
• course webpage:

http://www.cs.washington.edu/education/courses/378/11wi/
• discussion board – please join in!
• mailing list (mostly for announcements from course staff)

7

Who are you?

32 students as of last night
Who has written programs in assembly before?
Anyone designed HW before?
Written a threaded program before?

8

Administriva – The Course

The textbook provides the most comprehensive coverage
(it’s a beautiful textbook, easy to read & use)

• Computer Organization and Design, Patterson and Hennessy, 4th
Edition

Lectures will present course material
Sections, you signed up for one; here’s how they work

We have CSE 003 Lab (2:30-5:30) for “lab work”
We’ll use Loew 216 for “classroom work” during the
first hour of labs as needed
—Labs will meet there this week!

Use lab time wisely, because we won’t usually be
around at other times
Don’t expect to finish lab projects during your official
lab time – start immediately and plan on outside time

TAKE NOTES

Administrivia – The Grading

Grading
• Lab assignments: 25%
• Homeworks: 15%
• Midterm: 20%
• Final: 35%
• Participation: 5%

Midterm: Friday, Feb. 11, in class

Final: Monday, March 14, 8:30 am. (sorry)

9

10

Instruction set architectures

Interface between hardware and software
— abstraction: hide HW complexity from the software through a set of

simple operations and devices

add, mul, and, lw, ...

Software

Hardware

ISA

11

MIPS

In this class, we’ll use the MIPS instruction set architecture (ISA) to
illustrate concepts in assembly language and machine organization
— Of course, the concepts are not MIPS-specific
— MIPS is just convenient because it is real, yet simple (unlike x86)

The MIPS ISA is still used in many places today. Primarily in embedded
systems, like:
— Various routers from Cisco
— Game machines like the Nintendo 64 and Sony Playstation 2

12

From C to Machine Language

a = b + c;

add $16, $17, $18

Compiler

Assembler

01010111010101101...

High-level
language (C)

Assembly
Language
(MIPS)

Binary
Machine
Language
(MIPS)

13

What you will need to learn soon

You must become “fluent” in MIPS assembly:
— Translate from C to MIPS and MIPS to C

Example problem: Write a recursive function

Here is a function pow that takes two arguments (n and m, both 32-bit
numbers) and returns nm (i.e., n raised to the mth power).

int
pow(int n, int m) {

if (m == 1)
return n;

return n * pow(n, m-1);
}

Translate this into a MIPS assembly language function.

14

Instruction Execution Engines

Computers are instruction execution engines that endlessly run the
fetch/execute cycle

This course explains in detail this logical process and how it is
implemented in hardware

Instruction Fetch
Instruction Decode
Operand Fetch
Instruction Execute
Result Return

15

MIPS: register-to-register, three address

MIPS is a register-to-register, or load/store, architecture.
— The destination and sources must all be registers.
— Special instructions, which we’ll see soon, are needed to access main

memory.

MIPS uses three-address instructions for data manipulation.
— Each ALU instruction contains a destination and two sources.
— For example, an addition instruction (a = b + c) has the form:

add a, b, c

operation

destination sources

operands

16

MIPS register file

MIPS processors have 32 registers, each of which holds a 32-bit value.
— Register addresses are 5 bits long.
— The data inputs and outputs are 32-bits wide.

More registers might seem better, but there is a limit to the goodness.
— It’s more expensive, because of both the registers themselves as well

as the decoders and muxes needed to select individual registers.
— Instruction lengths may be affected, as we’ll see in the future.

D data
Write

D address

A address B address

A data B data

32 × 32 Register File

55

5

32

32 32

17

MIPS register names

MIPS register names begin with a $. There are two naming conventions:
— By number:

$0 $1 $2 … $31

— By (mostly) two-character names, such as:

$a0-$a3 $s0-$s7 $t0-$t9 $sp $ra

Not all of the registers are equivalent:
— E.g., register $0 or $zero always contains the value 0

(go ahead, try to change it)

Other registers have special uses, by convention:
— E.g., register $sp is used to hold the “stack pointer”

You have to be a little careful in picking registers for your programs.
—More about this later

18

Basic arithmetic and logic operations

The basic integer arithmetic operations include the following:

add sub mul div

And here are a few logical operations:

and or xor

Remember that these all require three register operands; for example:

add $t0, $t1, $t2 # $t0 = $t1 + $t2
mul $s1, $s1, $a0 # $s1 = $s1 x $a0

19

More complex arithmetic expressions may require multiple operations at
the instruction set level.

t0 = (t1 + t2) × (t3 - t4)

add $t0, $t1, $t2 # $t0 contains $t1 + $t2
sub $s0, $t3, $t4 # Temporary value $s0 = $t3 - $t4
mul $t0, $t0, $s0 # $t0 contains the final product

Temporary registers may be necessary, since each MIPS instructions can
access only two source registers and one destination.
— In this example, we could re-use $t3 instead of introducing $s0.
— But be careful not to modify registers that are needed again later.

Larger expressions

20

Immediate operands

The ALU instructions we’ve seen so far expect register operands. How do
you get data into registers in the first place?
— Some MIPS instructions allow you to specify a signed constant, or

“immediate” value, for the second source instead of a register. For
example, here is the immediate add instruction, addi:

addi $t0, $t1, 4 # $t0 = $t1 + 4

— Immediate operands can be used in conjunction with the $zero register
to write constants into registers:

addi $t0, $0, 4 # $t0 = 4

MIPS is still considered a load/store architecture, because arithmetic
operands cannot be from arbitrary memory locations. They must either be
registers or constants that are embedded in the instruction.

21

We need more space!

Registers are fast and convenient, but we have only 32 of them, and each
one is just 32-bits wide.
— That’s not enough to hold data structures like large arrays.
— We also can’t access data elements that are wider than 32 bits.

We need to add some main memory to the system!
— RAM is cheaper and denser than registers, so we can add lots of it.
— But memory is also significantly slower, so registers should be used

whenever possible.
In the past, using registers wisely was the programmer’s job.
— For example, C has a keyword “register” to mark commonly-used

variables which should be kept in the register file if possible.
— However, modern compilers do a good job of using registers

intelligently and minimizing RAM accesses.

22

How to Succeed in CSE 378

Remember the big picture.
What are we trying to accomplish, and why?
Read the textbook.
It’s clear, well-organized, and well-written. The diagrams can be complex,
but are worth studying. Work through the examples and try some
exercises on your own. Read the “Real Stuff” and “Historical Perspective”
sections.
Talk to each other.
You can learn a lot from other CSE378 students, both by asking and
answering questions. Find some good partners for the homeworks/labs
(but make sure you all understand what’s going on).
Help us help you.
Come to lectures, sections and office hours. Use the discussion board &
Wiki. Ask lots of questions! Check out the web pages.

