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Lecture 9



Single-Cycle Performance

Last time we saw a MIPS single-cycle datapath and control unit.
Today, we’ll explore factors that contribute to a processor’s execution 
time, and specifically at the performance of the single-cycle machine.
Next time, we’ll explore how to improve on the single cycle machine’s 
performance using pipelining.



Three Components of CPU Performance

Cycles Per Instruction

CPU timeX,P =  Instructions executedP * CPIX,P * Clock cycle timeX



Instructions executed:
— We are not interested in the static instruction count, or how many 

lines of code are in a program.
— Instead we care about the dynamic instruction count, or how many 

instructions are actually executed when the program runs.
There are three lines of code below, but the number of instructions 
executed would be….

li $a0, 1000
Ostrich: sub $a0, $a0, 1

bne $a0, $0, Ostrich

Instructions Executed



The average number of clock cycles per instruction, or CPI, is a function 
of the machine and program.
— The CPI depends on the actual instructions appearing in the program—

a floating-point intensive application might have a higher CPI than an 
integer-based program.

— It also depends on the CPU implementation. For example, a i7 can 
execute the same instructions as an older 80486, but faster.

So far we assumed each instruction took one cycle, so we had CPI = 1.
— The CPI can be >1 due to memory stalls and slow instructions.
— The CPI can be <1 on machines that execute more than 1 instruction 

per cycle (superscalar).

CPI



One “cycle” is the minimum time it takes the CPU to do any work.
— The clock cycle time or clock period is just the length of a cycle.
— The clock rate, or frequency, is the reciprocal of the cycle time.

Generally, a higher frequency is better.
Some examples illustrate some typical frequencies.
— A 500MHz processor has a cycle time of ?
— A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns (500ps).

Clock cycle time



CPU timeX,P =  Instructions executedP * CPIX,P * Clock cycle timeX

The easiest way to remember this is match up the units:

Make things faster by making any component smaller!!

Often easy to reduce one component by increasing another

Execution time, again

Seconds
=

Instructions
*

Clock cycles
*

Seconds

Program Program Instructions Clock cycle

Program Compiler ISA Organization Technology

Instruction
Executed

CPI

Clock Cycle 
TIme



Let’s compare the performances two x86-based processors.
— An 800MHz AMD Duron, with a CPI of 1.2 for an MP3 compressor.
— A 1GHz Pentium III with a CPI of 1.5 for the same program.

Compatible processors implement identical instruction sets and will use 
the same executable files, with the same number of instructions.
But they implement the ISA differently, which leads to different CPIs.

CPU timeAMD,P = InstructionsP * CPIAMD,P * Cycle timeAMD

= 
= 

CPU timeP3,P = InstructionsP * CPIP3,P * Cycle timeP3

= 
= 

Example 1: ISA-compatible processors
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Performance of Single-cycle Design

CPU timeX,P =  Instructions executedP * CPIX,P * Clock cycle timeX



Edge-triggered state elements

In an instruction like add $t1, $t1, $t2, how do we know 
$t1 is not updated until after its original value is read?
We’ll assume that our state elements are positive edge 
triggered, and are updated only on the positive edge of a 
clock signal.
— The register file and data memory have explicit write 

control signals, RegWrite and MemWrite. These units 
can be written to only if the control signal is asserted 
and there is a positive clock edge.

— In a single-cycle machine the PC is updated on each 
clock cycle, so we don’t bother to give it an explicit 
write control signal.
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The datapath and the clock

1. On a positive clock edge, the PC is updated with a new address.
2. A new instruction can then be loaded from memory. The control unit sets 

the datapath signals appropriately so that
— registers are read,
— ALU output is generated,
— data memory is read or written, and
— branch target addresses are computed.

3. Several things happen on the next positive clock edge.
— The register file is updated for arithmetic or lw instructions.
— Data memory is written for a sw instruction.
— The PC is updated to point to the next instruction.

In a single-cycle datapath everything in Step 2 must complete within one 
clock cycle, before the next positive clock edge.

How long is that clock cycle?
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The slowest instruction...

If all instructions must complete within one clock cycle, then the cycle 
time has to be large enough to accommodate the slowest instruction.
For example, lw $t0, –4($sp) is the slowest instruction needing __ns.
— Assuming the circuit latencies below.
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The slowest instruction...

If all instructions must complete within one clock cycle, then the cycle 
time has to be large enough to accommodate the slowest instruction.
For example, lw $t0, –4($sp) needs 8ns, assuming the delays shown here.
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...determines the clock cycle time

If we make the cycle time 8ns then every instruction will take 8ns, even
if they don’t need that much time.
For example, the instruction add $s4, $t1, $t2 really needs just 6ns.
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How bad is this?

With these same component delays, a sw instruction would need 7ns, and 
beq would need just 5ns.
Let’s consider a typical gcc instruction mix.

With a single-cycle datapath, each instruction would require 8ns.
But if we could execute instructions as fast as possible, the average time 
per instruction for gcc would be:

(48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns

The single-cycle datapath is about 1.26 times slower!

Instruction Frequency

Arithmetic 48%
Loads 22%
Stores 11%

Branches 19%



It gets worse...

We’ve made very optimistic assumptions about memory latency:
— Main memory accesses on modern machines is >50ns.

• For comparison, an ALU on an AMD Opteron takes ~0.3ns.
Our worst case cycle (loads/stores) includes 2 memory accesses
— A modern single cycle implementation would be stuck at <10Mhz.
— Caches will improve common case access time, not worst case.

Tying frequency to worst case path violates first law of performance!!
— “Make the common case fast” (we’ll revisit this often)



Summary

Performance is one of the most important criteria in judging systems.
— Here we’ll focus on Execution time.

Our main performance equation explains how performance depends on 
several factors related to both hardware and software.

CPU timeX,P = Instructions executedP * CPIX,P * Clock cycle timeX

It can be hard to measure these factors in real life, but this is a useful 
guide for comparing systems and designs.
A single-cycle CPU has two main disadvantages.
— The cycle time is limited by the worst case latency.
— It isn’t efficiently using its hardware.

Next time, we’ll see how this can be rectified with pipelining.


