
1

Lecture 10

Today’s objectives:
— Intro to Pipelining

2

A relevant question

Assuming you’ve got:
— One washer (takes 30 minutes)

— One drier (takes 40 minutes)

— One “folder” (takes 20 minutes)

It takes 90 minutes to wash, dry, and fold 1 load of laundry.
— How long does 4 loads take?

3

The slow way

If each load is done sequentially it takes 6 hours

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Time

4

Laundry Pipelining

Start each load as soon as possible
— Overlap loads

Pipelined laundry takes 3.5 hours

6 PM 7 8 9 10 11 Midnight

Time

30 40 40 40 40 20

5

Pipelining Lessons

Pipelining doesn’t help latency of
single load, it helps throughput of
entire workload
Pipeline rate limited by slowest
pipeline stage
Multiple tasks operating
simultaneously using different
resources
Potential speedup = Number pipe
stages
Unbalanced lengths of pipe stages
reduces speedup
Time to “fill” pipeline and time to
“drain” it reduces speedup

6 PM 7 8 9

Time

30 40 40 40 40 20

6

Pipelining

Pipelining is a general-purpose efficiency technique
— It is not specific to processors

Pipelining is used in:
— Assembly lines
— Bucket brigades
— Fast food restaurants

Pipelining is used in other CS disciplines:
— Networking
— Server software architecture

Useful to increase throughput in the presence of long latency
— More on that later…

7

Instruction execution review

Executing a MIPS instruction can take up to five steps.

However, as we saw, not all instructions need all five steps.

Step Name Description

Instruction Fetch IF Read an instruction from memory.

Instruction Decode ID Read source registers and generate control signals.

Execute EX Compute an R-type result or a branch outcome.

Memory MEM Read or write the data memory.

Writeback WB Store a result in the destination register.

Instruction Steps required

beq IF ID EX

R-type IF ID EX WB

sw IF ID EX MEM

lw IF ID EX MEM WB

8

Single-cycle datapath diagram

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp2ns

2ns
2ns

1ns

How long does it take to execute each instruction?

9

Single-cycle review

All five execution steps occur in one clock cycle.
This means the cycle time must be long enough to accommodate all the
steps of the most complex instruction—a “lw” in our instruction set.
— If the register file has a 1ns latency and the memories and ALU have a

2ns latency, “lw” will require 8ns.
— Thus all instructions will take 8ns to execute.

Each hardware element can only be used once per clock cycle.
— A “lw” or “sw” must access memory twice (in the IF and MEM stages),

so there are separate instruction and data memories.
— There are multiple adders, since each instruction increments the PC

(IF) and performs another computation (EX). On top of that, branches
also need to compute a target address.

10

Example: Instruction Fetch (IF)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Let’s quickly review how lw is executed in the single-cycle datapath.
We’ll ignore PC incrementing and branching for now.
In the Instruction Fetch (IF) step, we read the instruction memory.

11

Instruction Decode (ID)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

The Instruction Decode (ID) step reads the source registers from the
register file.

12

Execute (EX)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

The third step, Execute (EX), computes the effective memory address
from the source register and the instruction’s constant field.

13

Memory (MEM)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

The Memory (MEM) step involves reading the data memory, from the
address computed by the ALU.

14

Writeback (WB)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Finally, in the Writeback (WB) step, the memory value is stored into the
destination register.

15

A bunch of lazy functional units

Notice that each execution step uses a different functional unit.
In other words, the main units are idle for most of the 8ns cycle!
— The instruction RAM is used for just 2ns at the start of the cycle.
— Registers are read once in ID (1ns), and written once in WB (1ns).
— The ALU is used for 2ns near the middle of the cycle.
— Reading the data memory only takes 2ns as well.

That’s a lot of hardware sitting around doing nothing.

16

Putting those slackers to work

We shouldn’t have to wait for the entire instruction to complete before
we can re-use the functional units.
For example, the instruction memory is free in the Instruction Decode
step as shown below, so...

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Instruction Decode (ID)Idle

17

Decoding and fetching together

Why don’t we go ahead and fetch the next instruction while we’re
decoding the first one?

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Read
address

Decode 1st instructionFetch 2nd

18

Executing, decoding and fetching

Similarly, once the first instruction enters its Execute stage, we can go
ahead and decode the second instruction.
But now the instruction memory is free again, so we can fetch the third
instruction!

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Decode 2ndFetch 3rd Execute 1st

19

Making Pipelining Work

We’ll make our pipeline 5 stages long, to handle load instructions as they
were handled in the multi-cycle implementation
— Stages are: IF, ID, EX, MEM, and WB

We want to support executing 5 instructions simultaneously: one in each
stage.

20

Break datapath into 5 stages

Each stage has its own functional units.
Each stage can execute in 2ns

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

IDIF EXE MEM WB

2ns 2ns 2ns2ns

21

Pipelining Loads

6 PM 7 8 9
Time

30 40 40 40 40 20

Clock cycle
1 2 3 4 5 6 7 8 9

lw $t0, 4($sp) IF ID EX MEM WB

lw $t1, 8($sp) IF ID EX MEM WB

lw $t2, 12($sp) IF ID EX MEM WB

lw $t3, 16($sp) IF ID EX MEM WB

lw $t4, 20($sp) IF ID EX MEM WB

22

A pipeline diagram

A pipeline diagram shows the execution of a series of instructions.
— The instruction sequence is shown vertically, from top to bottom.
— Clock cycles are shown horizontally, from left to right.
— Each instruction is divided into its component stages. (We show five

stages for every instruction, which will make the control unit easier.)
This clearly indicates the overlapping of instructions. For example, there
are three instructions active in the third cycle above.
— The “lw” instruction is in its Execute stage.
— Simultaneously, the “sub” is in its Instruction Decode stage.
— Also, the “and” instruction is just being fetched.

Clock cycle
1 2 3 4 5 6 7 8 9

lw $t0, 4($sp) IF ID EX MEM WB

sub $v0, $a0, $a1 IF ID EX MEM WB

and $t1, $t2, $t3 IF ID EX MEM WB

or $s0, $s1, $s2 IF ID EX MEM WB

add $sp, $sp, -4 IF ID EX MEM WB

23

Pipeline terminology

The pipeline depth is the number of stages—in this case, five.
In the first four cycles here, the pipeline is filling, since there are unused
functional units.
In cycle 5, the pipeline is full. Five instructions are being executed
simultaneously, so all hardware units are in use.
In cycles 6-9, the pipeline is emptying.

filling full emptying

Clock cycle
1 2 3 4 5 6 7 8 9

lw $t0, 4($sp) IF ID EX MEM WB

sub $v0, $a0, $a1 IF ID EX MEM WB

and $t1, $t2, $t3 IF ID EX MEM WB

or $s0, $s1, $s2 IF ID EX MEM WB

add $sp, $sp, -4 IF ID EX MEM WB

24

Pipelining Performance

Execution time on ideal pipeline:
— time to fill the pipeline + one cycle per instruction
— N instructions -> 4 cycles + N cycles or (2N + 8) ns for 2ns clock period

Compare with single-cycle implementation:
— N cycles or 8N ns for 8ns clock period

How much faster is pipelining for N=1000 ?

Clock cycle

1 2 3 4 5 6 7 8 9
lw $t0, 4($sp) IF ID EX MEM WB

lw $t1, 8($sp) IF ID EX MEM WB

lw $t2, 12($sp) IF ID EX MEM WB

lw $t3, 16($sp) IF ID EX MEM WB

lw $t4, 20($sp) IF ID EX MEM WB
filling

25

Pipeline Datapath: Resource Requirements
Clock cycle

1 2 3 4 5 6 7 8 9
lw $t0, 4($sp) IF ID EX MEM WB

lw $t1, 8($sp) IF ID EX MEM WB

lw $t2, 12($sp) IF ID EX MEM WB

lw $t3, 16($sp) IF ID EX MEM WB

lw $t4, 20($sp) IF ID EX MEM WB

We need to perform several operations in the same cycle.
— Increment the PC and add registers at the same time.
— Fetch one instruction while another one reads or writes data.

Thus, like the single-cycle datapath, a pipelined processor duplicates
hardware elements that are needed several times in the same clock
cycle.

26

Pipelining other instruction types

R-type instructions only require 4 stages: IF, ID, EX, and WB
— We don’t need the MEM stage

What happens if we try to pipeline loads with R-type instructions?

Clock cycle
1 2 3 4 5 6 7 8 9

add $sp, $sp, -4 IF ID EX WB

sub $v0, $a0, $a1 IF ID EX WB

lw $t0, 4($sp) IF ID EX MEM WB

or $s0, $s1, $s2 IF ID EX WB

lw $t1, 8($sp) IF ID EX MEM WB

27

Important Observation

Each functional unit can only be used once per instruction
Each functional unit must be used at the same stage for all instructions.
See the problem if:
— Load uses Register File’s Write Port during its 5th stage
— R-type uses Register File’s Write Port during its 4th stage

Clock cycle
1 2 3 4 5 6 7 8 9

add $sp, $sp, -4 IF ID EX WB

sub $v0, $a0, $a1 IF ID EX WB

lw $t0, 4($sp) IF ID EX MEM WB

or $s0, $s1, $s2 IF ID EX WB

lw $t1, 8($sp) IF ID EX MEM WB

28

A solution: Insert NOP stages

Enforce uniformity
— Make all instructions take 5 cycles.
— Make them have the same stages, in the same order

• Some stages will do nothing for some instructions

• Stores and Branches have NOP stages, too…

Clock cycle
1 2 3 4 5 6 7 8 9

add $sp, $sp, -4 IF ID EX NOP WB
sub $v0, $a0, $a1 IF ID EX NOP WB
lw $t0, 4($sp) IF ID EX MEM WB
or $s0, $s1, $s2 IF ID EX NOP WB
lw $t1, 8($sp) IF ID EX MEM WB

R-type IF ID EX NOP WB

store IF ID EX MEM NOP

branch IF ID EX NOP NOP

29

Summary

Pipelining attempts to maximize instruction throughput by overlapping
the execution of multiple instructions.
Pipelining offers amazing speedup.
— In the best case, one instruction finishes on every cycle, and the

speedup is equal to the pipeline depth.
The pipeline datapath is much like the single-cycle one, but with added
pipeline registers
— Each stage needs is own functional units

Next time we’ll see the datapath and control, and walk through an
example execution.

