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Lecture 17

Today:
— More caches 



2

How big is the cache?

Suppose we have a byte-addressable machine with 16-bit addresses with a 
cache with the following characteristics:
It is direct-mapped
Each block holds one byte
The cache index is the four least significant bits

Two questions:
How many blocks does the cache hold?

How many bits of storage are required to build the cache (e.g., for the 
data array, tags, etc.)?
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More cache organizations

Now we’ll explore some alternate cache organizations.
— How can we take advantage of spatial locality too?
— How can we reduce the number of potential conflicts?

We’ll first motivate it with a brief discussion about cache performance.
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Memory System Performance

To examine the performance of a memory system, we 
need to focus on a couple of important factors.
— How long does it take to send data from the cache 

to the CPU?
— How long does it take to copy data from memory 

into the cache?
— How often do we have to access main memory?

There are names for all of these variables.
— The hit time is how long it takes data to be sent 

from the cache to the processor. This is usually 
fast, on the order of 1-3 clock cycles.

— The miss penalty is the time to copy data from 
main memory to the cache. This often requires 
dozens of clock cycles (at least).

— The miss rate is the percentage of misses.

Lots of
dynamic RAM

A little static
RAM (cache)

CPU
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Average memory access time

The average memory access time, or AMAT, can then be computed.

AMAT = Hit time + (Miss rate x Miss penalty)

This is just averaging the amount of time for cache hits and the amount 
of time for cache misses.
How can we improve the average memory access time of a system?
— Obviously, a lower AMAT is better.
— Miss penalties are usually much greater than hit times, so the best 

way to lower AMAT is to reduce the miss penalty or the miss rate.
However, AMAT should only be used as a general guideline. Remember 
that execution time is still the best performance metric.
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Performance example

Assume that 33% of the instructions in a program are data accesses. The 
cache hit ratio is 97% and the hit time is one cycle, but the miss penalty 
is 20 cycles.

AMAT = Hit time + (Miss rate x Miss penalty)
= 
=

How can we reduce miss rate?
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Performance example

Assume data accesses only. The cache hit ratio is 97% and the hit time is 
one cycle, but the miss penalty is 20 cycles.

AMAT = Hit time + (Miss rate x Miss penalty)
= 1 cycle + (3% x 20 cycles)
= 1.6 cycles

If the cache was perfect and never missed, the AMAT would be one cycle. 
But even with just a 3% miss rate, the AMAT here increases 1.6 times!

How can we reduce miss rate?
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One-byte cache blocks don’t take advantage of spatial locality, which 
predicts that an access to one address will be followed by an access to a 
nearby address. 
What can we do?

Spatial locality
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What we can do is make the cache block size larger than one byte.

Here we use two-
byte blocks, so
we can load the
cache with two
bytes at a time.
If we read from
address 12, the
data in addresses
12 and 13 would
both be copied to
cache block 2.

Spatial locality
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Now how can we figure out where data should be placed in the cache?
It’s time for block addresses! If the cache block size is 2n bytes, we can 
conceptually split the main memory into 2n-byte chunks too.
To determine the block address of a byte
address i, you can do the integer division

i / 2n

Our example has two-byte cache blocks, so
we can think of a 16-byte main memory as
an “8-block” main memory instead.
For instance, memory addresses 12 and 13
both correspond to block address 6, since
12 / 2 = 6 and 13 / 2 = 6.

Block addresses
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Once you know the block address, you can map it to the cache as before: 
find the remainder when the block address is divided by the number of 
cache blocks.
In our example, 
memory block 6
belongs in cache
block 2, since
6 mod 4 = 2.
This corresponds
to placing data
from memory
byte addresses
12 and 13 into
cache block 2.

Cache mapping
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When we access one byte of data in memory, we’ll copy its entire block 
into the cache, to hopefully take advantage of spatial locality.
In our example, if a program reads from byte address 12 we’ll load all of 
memory block 6 (both addresses 12 and 13) into cache block 2.
Note byte address 13 corresponds to the same memory block address! So 
a read from address 13 will also cause memory block 6 (addresses 12 and 
13) to be loaded into cache block 2.
To make things simpler, byte i of a memory block is always stored in byte 
i of the corresponding cache block.

Data placement within a block

12
13

Byte
Address

2

Cache
BlockByte 1Byte 0
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Locating data in the cache

Let’s say we have a cache with 2k blocks, each containing 2n bytes.
We can determine where a byte of data belongs in this cache by looking 
at its address in main memory.
— k bits of the address will select one of the 2k cache blocks.
— The lowest n bits are now a block offset that decides which of the 2n

bytes in the cache block will store the data.

Our example used a 22-block cache with 21 bytes per block. Thus, memory 
address 13 (1101) would be stored in byte 1 of cache block 2.

m-bit Address

k bits(m-k-n) bits
n-bit Block

OffsetTag Index

4-bit Address

2 bits1 bit
1-bit Block

Offset1 10 1
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A picture
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An exercise

n
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For the addresses below,
what byte is read from the 
cache (or is there a miss)?

1010
1110
0001
1101
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An exercise
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For the addresses below,
what byte is read from the 
cache (or is there a miss)?

1010 (0xDE)
1110 (miss, invalid)
0001 (0xFE)
1101 (miss, bad tag)
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A diagram of a larger example cache

Here is a cache with 1,024 
blocks of 4 bytes each, and 
32-bit memory addresses.
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A larger example cache mapping

Where would the byte from memory address 6146 be stored in this direct-
mapped 210-block cache with 22-byte blocks?
We can determine this with the binary force.
— 6146 in binary is 00...01 1000 0000 00 10.
— The lowest 2 bits, 10, mean this is the second byte in its block.
— The next 10 bits, 1000000000, are the block number itself (512).

Equivalently, you could use arithmetic instead.
— The block offset is 6146 mod 4, which equals 2.
— The block address is 6146/4 = 1536, so the index is 1536 mod 1024, or 

512.
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A diagram of a larger example cache mapping
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What goes in the rest of that cache block?

The other three bytes of that cache block come from the same memory 
block, whose addresses must all have the same index (1000000000) and 
the same tag (00...01).
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Again, byte i of a memory block is stored into byte i of the corresponding 
cache block.
— In our example, memory block 1536 consists of byte addresses 6144 to 

6147. So bytes 0-3 of the cache block would contain data from address 
6144, 6145, 6146 and 6147 respectively.

— You can also look at the lowest 2 bits of the memory address to find 
the block offsets.

Block offset Memory address Decimal
00 00..01 1000000000 00 6144
01 00..01 1000000000 01 6145
10 00..01 1000000000 10 6146
11 00..01 1000000000 11 6147

The rest of that cache block 

...
512
...

Index Tag DataValid


