
Final Lecture

A few minutes to wrap up and add some perspective

1

2

3

Instant replay

The quarter was split into roughly three parts and a coda.
— The 1st part covered instruction set architectures—the connection

between software and hardware.
— In the 2nd part of the course we discussed processor design. We

focused on pipelining, which is one of the most important ways of
improving processor performance.

— The 3rd part focused on large and fast memory systems (via caching),
virtual memory, and I/O.

— Finally, we briefly discussed performance tuning, including profiling
and exploiting data parallelism via SIMD and Multi-Core processors.

We also introduced many performance metrics to estimate the actual
benefits of all of these fancy designs.

MemoryProcessor

Input/Output

4

Some recurring themes

There were several recurring themes throughout the quarter.
— Instruction set and processor designs are intimately related.
— Parallel processing can often make systems faster.
— Performance and Amdahl’s Law quantifies performance limitations.
— Hierarchical designs combine different parts of a system.
— Hardware and software depend on each other.

5

Instruction sets and processor designs

The MIPS instruction set was designed for pipelining.
— All instructions are the same length, to make instruction fetch and

jump and branch address calculations simpler.
— Opcode and operand fields appear in the same place in each of the

three instruction formats, making instruction decoding easier.
— Only relatively simple arithmetic and data transfer instructions are

supported.
These decisions have multiple advantages.
— They lead to shorter pipeline stages and higher clock rates.
— They result in simpler hardware, leaving room for other performance

enhancements like forwarding, branch prediction, and on-die caches.

6

Parallel processing

One way to improve performance is to do more processing at once.
There were several examples of this in our CPU designs.
— Multiple functional units can be included in a datapath to let single

instructions execute faster. For example, we can calculate a branch
target while reading the register file.

— Pipelining allows us to overlap the executions of several instructions.
— SIMD performance operations on multiple data items simultaneously.
— Multi-core processors enable thread-level parallel processing.

Memory and I/O systems also provide many good examples.
— A wider bus can transfer more data per clock cycle.
— Memory can be split into banks that are accessed simultaneously.

Similar ideas may be applied to hard disks, as with RAID systems.
— A direct memory access (DMA) controller performs I/O operations

while the CPU does compute-intensive tasks instead.

7

Performance and Amdahl’s Law

First Law of Performance: Make the common case fast!

But, performance is limited by the slowest component of the system.
We’ve seen this in regard to cycle times in our CPU implementations.
— Single-cycle clock times are limited by the slowest instruction.
— Pipelined cycle times depend on the slowest individual stage.

Amdahl’s Law also holds true outside the processor itself.
— Slow memory or bad cache designs can hamper overall performance.
— I/O bound workloads depend on the I/O system’s performance.

8

Hierarchical designs

Hierarchies separate fast and slow parts of a system, and minimize the
interference between them.
— Caches are fast memories which speed up access to frequently-used

data and reduce traffic to slower main memory. (Registers are even
faster…)

— Buses can also be split into several levels, allowing higher-bandwidth
devices like the CPU, memory and video card to communicate without
affecting or being affected by slower peripherals.

9

Architecture and Software

Computer architecture plays a vital role in many areas of software.
Compilers are critical to achieving good performance.
— They must take full advantage of a CPU’s instruction set.
— Optimizations can reduce stalls and flushes, or arrange code and data

accesses for optimal use of system caches.
Operating systems interact closely with hardware.
— They should take advantage of CPU features like support for virtual

memory and I/O capabilities for device drivers.
— The OS handles exceptions and interrupts together with the CPU.

10

Five things that I hope you will remember

Abstraction: the separation of interface from implementation.
— ISA’s specify what the processor does, not how it does it.

Locality:
— Temporal Locality: “if you used it, you’ll use it again”
— Spatial Locality: “if you used it, you’ll use something near it”

Caching: buffering a subset of something nearby, for quicker access
— Typically used to exploit locality.

Indirection: adding a flexible mapping from names to things
— Virtual memory’s page table maps virtual to physical address.

Throughput vs. Latency: (# things/time) vs. (time to do one thing)
— Improving one does not necessitate improving the other.

