
1

2/4/99 CSE378 Control unit for mult. cycle 1

Control Unit for Multiple Cycle Implementation

• Control is more complex than in single cycle since:
– Need to define control signals for each step
– Need to know which step we are on

• Two methods for designing the control unit
– Finite state machine and hardwired control (extension of the single

cycle implementation)
– Microprogramming

2/4/99 CSE378 Control unit for mult. cycle 2

What are the control signals needed? (cf. Fig 5.32)

• Let’s look at control signals needed at each of 5 steps
• Signals needed for

– reading/writing memory
– reading/writing registers
– control the various muxes
– control the ALU

2

2/4/99 CSE378 Control unit for mult. cycle 3

Instruction fetch

• Need to read memory
– Choose input address (mux with signal IorD)
– Set MemRead signal
– Set IRwrite signal (note that there is no write signal for MDR;

Why?)

• Set sources for ALU
– Source 1: mux set to “come from PC” (signal ALUSrcA = 0)
– Source 2: mux set to “constant 4” (signal ALUSrcB = 01)

• Set ALU control to “+” (e.g., ALUop = 00)
• Set the mux to store in PC as coming from ALU (signal

PCsource = 01; cf. Figure 5.33 later)

2/4/99 CSE378 Control unit for mult. cycle 4

Instruction fetch (PC increment; cf. Figure 5.33)

• Set the mux to store in PC as coming from ALU (signal
PCsource = 01)

• Set PCwrite
– Note: this will become clearer when we look at step 3 of branch

instructions

3

2/4/99 CSE378 Control unit for mult. cycle 5

Instruction decode and read source registers

• Read registers in A and B
– No need for control signals. This will happen at every cycle. No

problem since neither IR (giving names of the registers) nor the
registers themselves are modified. When we need A and B as
sources for the ALU, e.g., in step 3, the muxes will be set
accordingly

• Branch target computations. Select inputs for ALU
– Source 1: mux set to “come from PC” (signal ALUSrcA = 0)
– Source 2: mux set to “come from IR, sign-extended, shifted left 2”

(signal ALUSrcB = 11)

• Set ALU control to “+” (e.g., ALUop = 00)

2/4/99 CSE378 Control unit for mult. cycle 6

Concept of “state”

• During steps 1 and 2, all instructions do the same thing
• At step 3, opcode is directing

– What control lines to assert (it will be different for a load, an add, a
branch etc.)

– What will be done at subsequent steps (e.g., access memory,
writing a register, fetching the next instruction)

• At each cycle, the control unit is put in a specific state that
depends only on the previous state and the opcode
– (current state, opcode) → (next state) Finite state machine (cf.

CSE370, CSE 322)

4

2/4/99 CSE378 Control unit for mult. cycle 7

The first two states

• Since the data flow and the control signals are the same for
all instructions in step 1 (instr. fetch) there is only one state
associated with step 1, say state 0

• And since all operations in the next step are also always
the same, we will have the transition
– (state 0, all) → (state 1)

2/4/99 CSE378 Control unit for mult. cycle 8

Customary notation

Instruction fetch

(state 0)

Memread

ALUSrcA = 0

IorD = 0

Irwrite

ALUsrcB = 01

ALUop =00

Pcwrite

Pcsource = 00

ALUSrcA = 0

ALUsrcB = 11

ALUop =00No label because transition
is always taken

Instruction decode and
read source registers

(state 1)

5

2/4/99 CSE378 Control unit for mult. cycle 9

Transitions from State 1

• After the decode, the data flow depends on the type of
instructions:
– Register-Register : Needs to compute a result and store it
– Load/Store: Needs to compute the address, access memory, and in

the case of a load store the result
– Branch: test the result of the condition and, if need be, change the

PC
– Jump: need to change the PC
– Immediate: Not shown in the figures. Let’s do it as an exercise

2/4/99 CSE378 Control unit for mult. cycle 10

State transitions from State 1

State 0 State 1

Start

Opcode “Mem op.” Opcode “R-R.” Opcode “branch.” Opcode “jump.”

State 2

6

2/4/99 CSE378 Control unit for mult. cycle 11

State 2: Memory Address Computation

• Set sources for ALU
– Source 1: mux set to “come from A” (signal ALUSrcA = 1)
– Source 2: mux set to “imm. extended” (signal ALUSrcB = 10)

• Set ALU control to “+” (e.g., ALUop = 00)
• Transition from State 2

– If we have a “load” transition to State 3
– If we have a “store” transition to State 5

2/4/99 CSE378 Control unit for mult. cycle 12

State 2: Memory address computation

ALUSrcA =1

ALUSrcB = 10

ALUop = 00

State 2

State 5
State 3

Opcode “load” Opcode “store”

7

2/4/99 CSE378 Control unit for mult. cycle 13

One more example: State 5 --Store

• The control signals are:
– Set mux for address as coming from ALUout (IorD = 1)
– Set MemWrite
– Note that what has to be written has been sitting in B all that time

(and was rewritten, unmodified, at every cycle).

• Since the instruction is completed, the transition from State
5 is always to State 0 to fetch a new instruction.
– (State 5, always) → (State 0)

2/4/99 CSE378 Control unit for mult. cycle 14

Multiple Cycle Implementation: the whole story

• Data path with control lines: Figure 5.33
• Control unit Finite State Machine Figure 5.42

– Immediate instructions are not there

8

2/4/99 CSE378 Control unit for mult. cycle 15

Hardwired implementation of the control unit

• Single cycle implementation:
– Input (Opcode + function bits) ⇒ Combinational circuit (PAL) ⇒

Output signals (data path)

• Multiple cycle implementation
– Need to implement the finite state machine
– Input (Opcode + function bits + Current State -- stable storage) ⇒

Combinational circuit (PAL) ⇒ Output signals (data path + setting
next state)

2/4/99 CSE378 Control unit for mult. cycle 16

Hardwired “diagram”

PAL

Opcode +
function bits

Input

Output

State Reg

To data path

