Drawbacks of single cycle implementation

» All instructions take the same time although
— someingtructions are longer than others;

« eg. load islonger than add since it has to access data memory in
addition to all the other stepsthat add does

— thusthe“cycle” hasto befor the “longest path”
» Some combinational units must be replicated since used in
the same cycle

— eg., ALU for computing branch address and ALU for computing
branch outcome

 but thisisno big deal

2/4/99 CSE378 Multicycle impl,. 1

Alternative to single cycle

» Have a shorter cycle and instructions execute in multiple
(shorter) cycles

» The (shorter) cycle time determined by the longest delay in
individual functional units (e.g., memory or ALU etc.)

» Possibility to streamline some resources since they will be
used at different cycles

» Sincethereis need to keep information “ between cycles’,
we' |l need to add some stable storage (registers) not visible
at the 1SA level

* Not al instructions will require the same number of cycles

2/4/99 CSE378 Multicycle impl,. 2




Multiple cycle implementation

» Follows the decomposition of the steps for the execution
of instructions
— Cycle 1. Instruction fetch and increment PC

— Cycle 2. Instruction decode and read source registers and branch
address computation

— Cycle 3. ALU execution or memory address calculation or set PC
if branch successful

— Cycle 4. Memory access (load/store) or write register (arithv/log)
— Cycle 5 Write register (load)
* Note that branch takes 3 cycles, load takes 5 cycles, al
otherstake 4 cycles

2/4/99 CSE378 Multicycle impl,.

I nstruction fetch

» Becausefieldsin theinstruction are needed at different
cycles, the instruction has to be kept in stable storage,
namely an Instruction Register (IR)

* Theregister transfer level actions during this step
IR- Memory[PC]
PC- PC+4

» Resources required

— Memory (but no need to distinguish between instruction and data
memories)

— ALU to increment PC
- IR

2/4/99 CSE378 Multicycle impl,.




Instruction decode and read source registers

 Instruction decode: send opcode to control unit and...(see
later)

* Perform* optimistic” computations that are not harmful

— Read rsand rt and store them in non-1SA visibleregisters A and B
that will be used asinput to ALU

A - REG[IR[25:21]] (read rs)
B - REG[IR[20:16]] (read rt)
— Compute the branch address just in case we had a branch!
ALUout = PC +(sign-ext(IR[15:0]) *4 (again anon-1SA visible
register)
* New resources

A, B, ALUout

204199 CSE378 Multicycleimpl,.

ALU execution

* Ifinstructionis R-type
ALUout -~ A op.B
 Ifinstruction is Immediate
ALUout = A op. sign-extend(IR[15:0])
 If instruction is Load/Store
ALUout = A + sign-extend(IR[15:0])
 Ifinstruction isbranch

If (A=B) then PC - ALUout (note thisisthe ALUout computed in
the previous cycle)

NoO new resources

2/4/99 CSE378 Multicycle impl,.




Memory access or ALU completion

e |f Load

MDR = Memory[ALUout] (MDR isthe Memory Data Register
non-1SA visible register)

» If Store
Memory[ALUout] = B

o |If arith
Reg[IR[15:11]] = ALUout

* New resources
- MDR

2/4/99 CSE378 Multicycle impl,.

Load completion

* Writeresult register
Reg[IR[20:16]] ~ ALUout

2/4/99 CSE378 Multicycle impl,.




Streamlining of resources (cf. Figure 5.31)

» No distinction between instruction and data memory
* OnlyoneALU
» But afew more muxes and registers (IR, MDR etc.)

2/4/99

CSE378 Multicycle impl,.




