
1

1/25/99 CSE378 Performance. 1

Performance of computer systems

• Many different factors among which:
– Technology

• Raw speed of the circuits (clock, switching time)
• Process technology (how many transistors on a chip)

– Organization
• What type of processor (e.g., RISC vs. CISC)
• What type of memory hierarchy
• What types of I/O devices

– How many processors in the system
– Software

• O.S., compilers, database drivers etc

1/25/99 CSE378 Performance. 2

What are some possible metrics

• Raw speed (peak performance = clock rate)
• Execution time (or response time): time to execute one

(suite of) program from beginning to end.
– Need benchmarks for integer dominated programs, scientific,

graphical interfaces, multimedia tasks, desktop apps, utilities etc.

• Throughput (total amount of work in a given time)
– measures utilization of resources (good metric when many users:

e.g., large data base queries, Web servers)

• Quite often improving execution time will improve
throughput and vice-versa

2

1/25/99 CSE378 Performance. 3

Execution time Metric

• Execution time: inverse of performance
Performance A = 1 / (Execution_time A)

• Processor A is faster than Processor B
Execution_time A < Execution_time B
Performance A > Performance B

• Relative performance
Performance A / Performance B =Execution_time B / Execution_time A

1/25/99 CSE378 Performance. 4

Measuring execution time

• Wall clock, response time, elapsed time
• Some systems have a “time” function

– Unix 13.7u 23.6s 18:37 3% 2069+1821k 13+24io 62pf+0w

• Difficult to make comparisons from one system to another
• Remainder of this lecture: CPU execution time

3

1/25/99 CSE378 Performance. 5

Definition of CPU execution time

CPU execution_time = CPU clock_cycles*clock cycle_time
• CPU clock_cycles is program dependent thus
 CPU execution_time is program dependent
• clock cycle_time (nanoseconds, ns)depends on the

particular processor
• clock cycle_time = 1/ clock cycle_rate (rate in MHz)

– clock cycle_time = 1µs, clock cycle_rate = 1 MHz
– clock cycle_time = 1ns, clock cycle_rate = 1 GHz

• Alternate definition
CPU execution_time = CPU clock_cycles / clock cycle_rate

1/25/99 CSE378 Performance. 6

CPI -- Cycles per instruction

• Definition: CPI average number of clock cycles per instr.
CPU clock_cycles = Number of instr. * CPI
CPU exec_time = Number of instr. * CPI *clock cycle_time
• Computer architects try to minimize CPI
• CPI in isolation is not a measure of performance

– program dependent, compiler dependent

• In an ideal pipelined processor (to be seen soon) CPI =1
– but… not ideal so CPI > 1
– could have CPI <1 if several instructions execute in parallel

(superscalar processors)

4

1/25/99 CSE378 Performance. 7

Classes of instructions

• Some classes of instr. take longer to execute than others
– e.g., floating-point operations take longer than integer operations

• Assign CPI’s per classes of inst., say CPIi
CPU exec_time = Σ (CPIi *Ci)* clock cycle_time
where Ci is the number of insts. of class i that have been executed

• Note that minimizing the number of instructions does not
necessarily improve execution time

• Improving one part of the architecture can improve the CPI
of one class of instructions
– One often talks about the contribution to the CPI of a class of

instructions

1/25/99 CSE378 Performance. 8

How to measure the average CPI

CPU exec_time = Number of instr. * CPI *clock cycle_time

• Count instructions executed in each class
• Needs a simulator

– interprets every instruction and counts their number

• or a profiler
– discover the most often used parts of the program and instruments

only those
– or use sampling

• Use of programmable hardware counters
– most modern microprocessors have this feature

Elapsed time: wall clock
A given of the
processor

5

1/25/99 CSE378 Performance. 9

Other popular performance measures: MIPS

• MIPS (Millions of instructions per second)
MIPS = Instruction count / (Exec.time * 106)
MIPS = (Instr. count * clock rate)/(Instr. count *CPI * 106)
MIPS = clock rate /(CPI * 106)

• MIPS is a rate: the higher the better
• MIPS in isolation no better than CPI in isolation

– Program and/or compiler dependent
– Does not take the instruction set into account
– can give “wrong” comparative results

1/25/99 CSE378 Performance. 10

Other metric: MFLOPS

• Similar to MIPS in spirit
• Used for scientific programs/machines
• MFLOPS: million of floating-point ops/second

6

1/25/99 CSE378 Performance. 11

Benchmarks

• Benchmark: workload representative of what a system will
be used for

• Industry benchmarks
– SPECint and SPECfp industry benchmarks updated every 3 years
– Perfect Club, NASA kernel: scientific benchmarks
– TPC-A, TPC-B, TPC-C and TPC-D used for databases and data

mining
– Benchmarks for desktop applications, web applications are not as

standard
– Beware!

• Compilers are super optimized for the benchmarks

1/25/99 CSE378 Performance. 12

How to report (benchmark) performance

• If you measure execution times use arithmetic mean
– e.g., for n benchmarks

(Σexec_timei) / n
• If you measure rates use harmonic mean

n/ (Σ 1/ratei) = 1/(arithmetic mean)

