
1

CSE 390a

Lecture 6

bash scripting continued; remote X windows; unix tidbits

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.edu/390a/

http://www.cs.washington.edu/390a/

2

Lecture summary

• more shell scripting

 if/else

 while/until

 select/case

 advanced: arrays and functions

• Remote editing/GUI

• various new Unix/Linux commands

 file archiving and compression

 shell history

 newlines in Unix vs Windows

3

if/else
 if [test]; then # basic if
 commands
 fi

 if [test]; then # if / else if / else
 commands1
 elif [test]; then
 commands2
 else
 commands3
 fi

• The [] syntax is actually shorthand for a shell command called “test”

(Try: “man test”)

• there MUST be spaces as shown:
 if space [space test space]

• include the semi-colon after] (or put “then” on the next line)

4

test operators

if [$USER = “husky14"]; then
 echo ‘Woof! Go Huskies!’
fi

LOGINS=`w -h | wc -l`
if [$LOGINS -gt 10]; then
 echo ‘attu is very busy right now!’
fi

comparison operator description

 =, !=, \<, \> compares two string variables

 -z, -n tests if a string is empty (zero-length) or not empty
(nonzero-length)

 -lt, -le, -eq,

 -gt, -ge, -ne

compares numbers; equivalent to Java's

<, <=, ==, >, >=, !=

 -e, -f, -d tests whether a given file or directory exists

 -r, -w, -x tests whether a file exists and is read/writable

*Note: man test will show other operators.

5

More if testing

alert user if running >= 10 processes when
attu is busy (>= 5 users logged in)
LOGINS=`w -h | wc -l`
PROCESSES=`ps -u $USER | wc -l`
if [$LOGINS -ge 5 -a $PROCESSES -gt 10]; then
 echo "Quit hogging the server!"
fi

compound comparison operators description

 if [expr1 -a expr2]; then ...

 if [test1] && [test2]; then ...

and

 if [expr1 -o expr2]; then ...

 if [test1] || [test2]; then ...

or

 if [! expr]; then ... not

6

safecopy Exercise

• Write a script called safecopy that will mimic the behavior of cp –i
where from is a filename and to is a filename:

$ cp –i from.txt to.txt
Do you want to overwrite to.txt? (yes/no)

$./safecopy from.txt to.txt
Do you want to overwrite to.txt? (yes/no)

7

safecopy Exercise Solution

#!/bin/bash

FROM=$1

TO=$2

if [-e $TO]; then

 read -p "Do you want to overwrite $TO?" ANSWER

 if [$ANSWER = "yes"]; then

 cp $FROM $TO

 fi

else

 cp $FROM $TO

fi

8

BMI Exercise

• Write a program that computes the user's body mass index (BMI) to
the nearest integer, as well as the user's weight class:

$./bmi
Usage: ./bmi weight height

$./bmi 112 72
Your Body Mass Index (BMI) is 15
Here is a sandwich; please eat.

$./bmi 208 67
Your Body Mass Index (BMI) is 32
There is more of you to love.

BMI Weight class

 18 underweight

18 - 24 normal

25 - 29 overweight

 30 obese

703
2

height

weight
BMI

9

BMI Exercise solution

#!/bin/bash
Body Mass Index (BMI) calculator
if [$# -lt 2]; then
 echo "Usage: $0 weight height"
 exit 1 # 1 indicates failure, 0 for success
fi

let H2=“$2 * $2”
let BMI="703 * $1 / $H2"
echo "Your Body Mass Index (BMI) is $BMI"
if [$BMI -le 18]; then
 echo "Here is a sandwich; please eat."
elif [$BMI -le 24]; then
 echo "You're in normal weight range."
elif [$BMI -le 29]; then
 echo "You could stand to lose a few."
else
 echo "There is more of you to love."
fi

10

Common errors

• [: -eq: unary operator expected

 you used an undefined variable in an if test

• [: too many arguments

 you tried to use a variable with a large, complex value (such as multi-
line output from a program) as though it were a simple int or string

• let: syntax error: operand expected (error token is " ")

 you used an undefined variable in a let mathematical expression

11

while and until loops

 while [test]; do # go while test is true
 commands
 done

 until [test]; do # go while test is false
 commands
 done

12

While exercise

• Prompt the user for what they would like to do. While their answer
is “open the pod bay doors” tell them that you cannot do
that and prompt for another action.

13

While Exercise solution

#!/bin/bash
What would you like to do?
 read -p "What would you like me to do? " ACTION
 echo "You said: $ACTION"
 while ["$ACTION" = "open the pod bay doors"]; do
 echo "I'm sorry Dave, I'm afraid I can't do that."
 read -p "What would you like me to do? " ACTION
 echo "You said: $ACTION"
 done
 echo "Bye"

The quotes around “$ACTION” are important here,

try removing them and see what happens.

14

select and case

• Bash Select

PS3=prompt # Special* variable for the select prompt

select choice in choices; do

 commands

 # Break, otherwise endless loop

 break

 done

• Bash Case

 case EXPRESSION in

 CASE1) COMMAND-LIST;;

 CASE2) COMMAND-LIST;;

 ...

 CASEN) COMMAND-LIST;;

 esac
*see lecture 5

15

select/case Exercise

• Have the user select their favorite kind of music, and output a
message based on their choice

16

select/case Exercise Solution

PS3="What is your favorite kind of music? "

select CHOICE in "rock" "pop" "dance" "reggae"; do

 case "$CHOICE" in

 "rock") echo "Rock on, dude.";;

 "pop") echo "Top 100 is called that for a reason.";;

 "dance") echo "Let's lay down the Persian!";;

 "reggae") echo "Takin' it easy...";;

 *) echo "come on...you gotta like something!";;

 esac

 break

done

17

Arrays

 name=(element1 element2 ... elementN)

 name[index]=value # set an element

 $name # get first element

 ${name[index]} # get an element

 ${name[*]} # elements sep.by spaces

 ${#name[*]} # array's length

 arrays don't have a fixed length; they can grow as necessary

 if you go out of bounds, shell will silently give you an empty string

• you don't need to use arrays in assignments in this course

18

Functions

 function name() { # declaration
 commands # ()’s are optional
 }

 name # call

 functions are called simply by writing their name (no parens)

 parameters can be passed and accessed as $1, $2, etc. (icky)

• you don't need to use functions in assignments in this course

19

Other useful tidbits

20

tar files

 Originally used to create “tape archive” files

 Combines multiple files into a single .tar file

 You probably always want to use –f option and IT SHOULD COME LAST

• To create a single file from multiple files:

$ tar -cf filename.tar stuff_to_archive

 -c creates an archive

 -f read to/from a file

 stuff_to_archive - can be a list of filenames or a directory

• To extract files from an archive:

$ tar -xf filename.tar

 -x extracts files from an archive

description

 tar create or extract .tar archives (combines multiple files into one .tar file)

21

Compressed files

• To compress a file:

 $ gzip filename produces: filename.gz

• To uncompress a file:

 $ gunzip filename.gz produces: filename

Similar for zip, bzip2. See man pages for more details.

command description

 zip, unzip create or extract .zip compressed archives

 gzip, gunzip GNU free compression programs (single-file)

 bzip2, bunzip2 slower, optimized compression program (single-file)

22

.tar.gz archives

• Many Linux programs are distributed as .tar.gz archives (sometimes
called .tgz)

• You could unpack this in two steps:

1. gzip foo.tar.gz produces: foo.tar

2. tar –xf foo.tar extracts individual files

• You can also use the tar command to create/extract compressed
archive files all in one step:

 $ tar -xzf filename.tar.gz

 -x extracts files from an archive

 -z filter the archive through gzip (compress/uncompress it)

 -f read to/from a file

Handy tip: You can use the “file” command to see what type a file is,

just changing the file extension on a file does not change its type.

23

tar examples

You can combine options (-v, -z, etc.) various ways:

Create a single .tar archive file from multiple files (without compression):

 $ tar -cvf filename.tar stuff_to_archive

 -c creates an archive file called filename.tar

 -v verbosely list the files processed

 -f read to/from a file (as opposed to a tape archive)

 stuff_to_archive - can be filenames or a directory

Add –z option and use filename.tar.gz to use compression:

$ tar -cvzf filename.tar.gz stuff_to_archive

24

Single vs double quotes

• Quotes tell the shell to treat the enclosed characters as a string

• Variable names are not expanded in single quotes

 STAR=*

•echo $STAR

•echo “$STAR”

•echo ‘$STAR’

25

Shell History

• The shell remembers all the commands you’ve entered

• Can access them with the history command

• Can execute the most recent matching command with !

 Ex: !less will search backwards until it finds a command that starts
with less, and re-execute the entire command line

• Can also execute a specific command number (use numbers from
the history command) with !

 Ex: !105 will re-execute command #105

• Remember: Up arrow will also retrieve previously used commands.

26

Newlines in Windows/Unix

• Early printers had two different command characters:

 Carriage return (\r) – move the print head back to the left margin

 Line feed (\n) – move the paper to the next line

 Both occurred when you wanted a “newline”

• As time went on, various combos were used to signify a “newline”

 Windows typically uses the (\r\n) version

 MacOS uses (\r)

 Unix uses (\n)

• Can cause problems when displaying text files created on one
system on another system

 Most modern text editors recognize both and do the right thing

 Can convert if needed:

•dos2unix and unix2dos commands

27

Remote X display

Normally, you can’t run graphical programs on remote servers (e.g. attu)

• however, if you connect your SSH with the -X parameter, you can!

 the X-Windows protocol is capable of displaying programs remotely

ssh -X attu.cs.washington.edu

• Other options (-Y for “Trusted” mode, -C for compressed, see online)

Then try:
 xeyes, xterm, xclock

28

Mounting cse homedir on VM

https://www.cs.washington.edu/lab/software/homeVMs/linuxVM#install

• Create a directory in your home directory, called csehomedir:

 cd

 mkdir csehomedir

• Now to use that directory as a “link” to your CSE files on your VM:

 sshfs username@attu: ~/csehomedir OR

 sshfs username@attu.cs.washington.edu:/homes/iws/username ~/csehomedir/

• It is a good idea to back up your files from your VM regularly.

 Actually keep your files on your CSE home directory

 Regularly move files from your VM to another location

 If you need to get a fresh VM image, you can save the files from your
old VM using this procedure:"My VM Seems Broken. How Do I Recover?"

• https://www.cs.washington.edu/lab/software/homeVMs/linuxVM#faq

https://www.cs.washington.edu/lab/software/homeVMs/linuxVM#install
https://www.cs.washington.edu/lab/software/homeVMs/linuxVM#faq
https://www.cs.washington.edu/lab/software/homeVMs/linuxVM#faq

29

Remote editing

• Gnome's file browser and gedit text editor are capable of opening
files on a remote server and editing them from your computer
 press Ctrl-L to type in a network location to open

