
1

CSE 390a

Lecture 7

Regular expressions,
egrep, and sed

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.edu/390a/

http://www.cs.washington.edu/390a/

2

Lecture summary

• regular expression syntax

• commands that use regular expressions
 egrep (extended grep) - search
 sed (stream editor) - replace

• links
 http://www.panix.com/~elflord/unix/grep.html
 http://www.robelle.com/smugbook/regexpr.html
 http://www.grymoire.com/Unix/Sed.html or
 http://www.gnu.org/software/sed/manual/sed.html

3

What is a regular expression?

"[a-zA-Z_\-]+@(([a-zA-Z_\-])+\.)+[a-zA-Z]{2,4}"

• regular expression ("regex"): a description of a pattern of text

 can test whether a string matches the expression's pattern

 can use a regex to search/replace characters in a string

 regular expressions are extremely powerful but tough to read

• (the above regular expression matches basic email addresses)

• regular expressions occur in many places:

 shell commands (grep)

 many text editors (TextPad) allow regexes in search/replace

 Java Scanner, String split (CSE 143 grammar solver)

4

egrep and regexes

 egrep "[0-9]{3}-[0-9]{3}-[0-9]{4}" contact.html

• grep uses “basic” regular expressions instead of “extended”

 extended has some minor differences and additional metacharacters

 we’ll just use extended syntax. See online if you’re interested in the
details.

• -i option before regex signifies a case-insensitive match

 egrep -i "mart" matches "Marty S", "smartie", "WALMART", ...

command description

 egrep extended grep; uses regexes in its search
patterns; equivalent to grep -E

5

Basic regexes

"abc"

• the simplest regexes simply match a particular substring

• this is really a pattern, not a string!

• the above regular expression matches any line containing "abc"

 YES : "abc", "abcdef", "defabc", ".=.abc.=.", ...

 NO : "fedcba", "ab c", "AbC", "Bash", ...

6

Wildcards and anchors

 . (a dot) matches any character except \n

 ".oo.y" matches "Doocy", "goofy", "LooPy", ...

 use \. to literally match a dot . character

 ^ matches the beginning of a line; $ the end

 "^fi$" matches lines that consist entirely of fi

 \< demands that pattern is the beginning of a word;
\> demands that pattern is the end of a word

 "\<for\>" matches lines that contain the word "for"

• Exercise : Find lines in ideas.txt that refer to the C language.

• Exercise : Find act/scene numbers in hamlet.txt .

7

Special characters

 | means OR

 "abc|def|g" matches lines with "abc", "def", or "g"

 precedence of ^(Subject|Date) vs. ^Subject|Date:

 There's no AND symbol.

 () are for grouping

 "(Homer|Marge) Simpson" matches lines containing
"Homer Simpson" or "Marge Simpson"

 \ starts an escape sequence

 many characters must be escaped to match them: / \ $. [] () ^ * + ?

 "\.\\n" matches lines containing ".\n"

8

Quantifiers: * + ?

 * means 0 or more occurrences
 "abc*" matches "ab", "abc", "abcc", "abccc", ...
 "a(bc)*" matches "a", "abc", "abcbc", "abcbcbc", ...
 "a.*a" matches "aa", "aba", "a8qa", "a!?_a", ...

 + means 1 or more occurrences
 "a(bc)+" matches "abc", "abcbc", "abcbcbc", ...
 "Goo+gle" matches "Google", "Gooogle", "Goooogle", ...

 ? means 0 or 1 occurrences

 "Martina?" matches lines with "Martin" or "Martina"

 "Dan(iel)?" matches lines with "Dan" or "Daniel"

• Exercise : Find all ^^ or ^_^ type smileys in chat.txt .

9

More quantifiers

 {min,max} means between min and max occurrences

 "a(bc){2,4}" matches "abcbc", "abcbcbc", or "abcbcbcbc"

• min or max may be omitted to specify any number

 "{2,}" means 2 or more

 "{,6}" means up to 6

 "{3}" means exactly 3

10

Character sets

 [] group characters into a character set;
will match any single character from the set

 "[bcd]art" matches strings containing "bart", "cart", and "dart"

 equivalent to "(b|c|d)art" but shorter

• inside [], most modifier keys act as normal characters

 "what[.!*?]*" matches "what", "what.", "what!", "what?**!", ...

• Exercise : Match letter grades in 143.txt such as A, B+, or D- .

11

Character ranges

• inside a character set, specify a range of characters with -

 "[a-z]" matches any lowercase letter

 "[a-zA-Z0-9]" matches any lower- or uppercase letter or digit

• an initial ^ inside a character set negates it

 "[^abcd]" matches any character other than a, b, c, or d

• inside a character set, - must be escaped to be matched

 "[+\-]?[0-9]+" matches optional + or -, followed by one digit

• Exercise : Match phone #s in contact.html, e.g. (206) 685-2181 .

12

sed

• Usage:

 sed -r "s/REGEX/TEXT/g" filename

• substitutes (replaces) occurrence(s) of regex with the given text

• if filename is omitted, reads from standard input (console)

• sed has other uses, but most can be emulated with substitutions

• Example (replaces all occurrences of 143 with 390):

 sed -r "s/143/390/g" lecturenotes.txt

command description

 sed stream editor; performs regex-based
replacements and alterations on input

13

more about sed

• sed is line-oriented; processes input a line at a time

 -r option makes regexes work better

• recognizes () , [] , * , + the right way, etc.

 s for substitute

 g flag after last / asks for a global match (replace all)

• special characters must be escaped to match them literally

 sed -r "s/http:\/\//https:\/\//g" urls.txt

• sed can use delimiters besides / to make more readable (e.g. #) :

 sed -r "s#http://#https://#g" urls.txt

14

sed exercises

• In movies.txt:

 Replace “The” with “The Super Awesome”

 Now do it only when The occurs at the beginning of the line.

 (Need the next slide for this)

 Move the year from the end of the line to the beginning of the line.

 Do this and also sort the movies by year

 Now do the two items above and then put the year back at the end of
the line.

15

Back-references

• every span of text captured by () is given an internal number

 you can use \number to use the captured text in the replacement

 \0 is the overall pattern

 \1 is the first parenthetical capture

 ...

• Back-references can also be used in egrep pattern matching

 Match “A” surrounded by the same character: “(.)A\1”

• Example: swap last names with first names

 sed -r "s/([A-Za-z]+), ([A-Za-z]+)/\2 \1/g" names.txt

• Exercise : Reformat phone numbers with 685-2181 format to (206)
685.2181 format.

16

Other tools

• find supports regexes through its -regex argument

find . -regex ".*CSE 14[23].*"

• Many editors understand regexes in their Find/Replace feature

17

Exercise

• Write a shell script that reads a list of file names from files.txt
and finds any occurrences of MM/DD dates and converts them into
MM/DD/YYYY dates.

 Example:

 04/17

 would be changed to:

 04/17/2013

18

Yay Regular Expressions!

Courtesy

XKCD

